","zoomIn":"","zoomOut":"","info":"","sweep":"","fontStyle":"","hasSeen":"","downloadSolutionSheet":"","showSolution":"","checkmarkGreen":"","multipleChoice":""},"images":{"https://editor.mnweg.org/uploads/images/1EA8733F-2701-4A74-8284-2ECDFF44977D_81ebc087-ac48-4c33-9284-3e8d405d0889.jpeg?width=687":"","https://editor.mnweg.org/uploads/images/2C55ED0E-6CF5-4465-A61A-2630671F19BD_65e016cc-b27c-4e2e-a9bd-c7093ac2695f.jpeg?width=378":"","https://editor.mnweg.org/uploads/images/40B1B216-9099-4D53-AA2E-5C4082F757AF_96099ceb-00aa-4c11-ba2e-2d3fd9a276e2.jpeg?width=573":"","https://editor.mnweg.org/uploads/images/48783CDE-8556-469A-8F8B-36E34DC06280_daa64c62-a689-4de3-8494-e998971acec1.jpeg?width=771":""},"translations":{"editor.tile.headline":"Überschrift","math.subtractionSign":"−","math.additionSign":"+","editor.tile.hint":"Hinweis","editor.tile.image":"Bild","editor.tile.youtube":"YouTube-Video","editor.tile.formula":"Formel","editor.tile.postIt":"Klebezettel","digital.worksheet.prefix":"dAb","digital.worksheet.url":"/dAb/{slug}","digital.toolbar.zoomIn":"Vergrößern {shortcut}","digital.toolbar.zoomOut":"Verkleinern {shortcut}","digital.toolbar.markRightWrong":"Richtige und Falsche anzeigen","digital.toolbar.showSolution":"Lösungen anzeigen","digital.toolbar.scrollNextTask":"Scrollen zur nächsten Aufgabe","digital.toolbar.shareSolution":"Lösung teilen","digital.toolbar.copySolutionUrl":"Lösungs-URL kopieren","digital.toolbar.downloadSolution":"Lösung herunterladen","digital.solution.headline":"Bearbeitetes Dokument","digital.solution.studentId":"Stimmt diese Nummer nicht mit der im Dateinamen überein? Dann handelt es sich womöglich um eine Kopie eines bereits bearbeiteten Arbeitsblattes.
Mehr erfahren.","digital.toolbar.clearInput":"Eingaben löschen","digital.toolbar.clearInputAndSelectTile":"Eingaben löschen (wählen Sie einen Baustein)","digital.toolbar.infoTile":"Baustein-Information","digital.toolbar.infoTileAndSelectTile":"Baustein-Information (wählen Sie einen Baustein)","tile.digital.explanation.fallback.passive":"Du kannst hier nichts weiter tun.","tile.digital.explanation.fallback":"Tippe oder klicke – sofern vorhanden – auf die Lücken, um diese auszufüllen.","tile.digital.overflowMessage":"Text zu lang, bitte kürzen!","tile.allocateWords.digital.explanation":"Tippe oder klicke auf eine Lücke, wähle aus dem Dropdown aus bzw. gib die Wörter ein.","tile.paper.digital.explanation":"Gib einen Text ein.","tile.paper.digital.nonLined.explanation":"Hier kannst du leider nicht schreiben. Eingaben sind nur auf einfacher Lineatur möglich.","tile.multipleChoice.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.multipleChoiceTable.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.pairOfTask.lines.digital.explanation":"Um ein Paar zu bilden, tippe oder klicke auf einen Partner und tippe dann auf den dazugehörigen Partner auf der anderen Seite. Um ein Paar zu löschen, tippe auf einen der verbundenen Partner.","tile.pairOfTask.number.digital.explanation":"Um ein Paar zu bilden, klicke auf den rechten Partner und gib die Nummer des dazugehörigen Partners auf der linken Seite ein.","tile.sortTask.digital.explanation":"Tippe oder klicke auf die jeweilige Lücke links und gib eine Zahl ein, die die Reihenfolge kenzeichnet.","tile.wordSearchPuzzle.digital.explanation":"Tippe einzeln auf die jeweiligen Buchstaben, die zu einem Lösungswort gehören. Wenn du mit einer Maus bzw. am Computer bist, kannst du mehrere Buchstaben gleichzeitig markieren. Erneutes tippen oder klicken löscht die Markierung wieder.","tile.crosswordPuzzle.digital.explanation":"Tippe oder klicke auf das auszufüllende Feld und gib den Lösungsbuchstaben ein.","tile.mathplot.digital.explanation":"Hier kannst du aktuell leider noch nichts ausfüllen, eingeben oder einzeichnen.","tile.signature.digital.explanation":"Hier kannst du aktuell noch nichts ausfüllen oder eingeben.","tile.qrcode.digital.explanation":"Tippe oder klicke den Code an, um den Link dahinter aufzurufen bzw. den Inhalt anzuzeigen.","digital.solution.filename":"Lösung","digital.solution.text":"Lösung","digital.noScriptHint":"
Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
\nWenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen.\n Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
\nEinige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
\nFür Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
\n
Wenden Sie sich für Rückfragen gern an: support@tutory.de
","digital.noScriptWithLink":"Auf diesem Weg kann das digitale Arbeitsblatt leider nicht anzeigt werden.
\nDas kann daran liegen, dass Sie es von einem iPad aus öffnen oder es in der Vorschau von anderen Programmen sehen, die unsere digitalen Arbeitsblätter nicht öffnen wollen.
\nWas kann man tun?
\n\n 1) Ermöglichen Sie das Bereitstellen dieses Dokuments per Link. Mehr dazu finden Sie im Dialog zur Bereitstellung des digitalen AB auf MNW.
\n 2) Laden Sie das Dokument in einem Lernmanagementsystem hoch, von welchem aus Lernende es im Browser öffnen können. Ziel des Versuchs muss es also sein, dass Dokument von einem Browser öffnen zu lassen. Wenn das gelingt, so kann das Dokument auch zuverlässig angezeigt werden.\n
Melden Sie sich bei Rückfragen gern beim Materialnetzwerk eG-Support oder lesen Sie Details zur Sache auf https://mnweg.org/faqs
\nViele Grüße
\nIhr MNW-Team
"},"config":{"worksheetFormats":{"a4Portrait":{"code":"a4Portrait","name":"A4 (Hochformat)","grids":[{"id":"main","gutter":1,"columnCount":12,"columnWidth":13.25}],"gridGutter":0,"height":297,"width":210,"paddingTop":10,"paddingLeft":20,"paddingRight":20,"paddingBottom":10,"bindingPosition":"left","headerHeight":26,"headerMarginBottom":4,"footerHeight":12,"footerMarginTop":4,"logoMarginTop":6,"logoMarginLeft":6,"logoMaxWidth":20,"logoMaxHeight":20}},"defaultWorksheetFormat":"a4Portrait","fontDimensions":{"small":{"sizePx":12,"lineHeightPx":16,"label":"9","breakpointSize":"small"},"medium":{"sizePx":14,"lineHeightPx":18,"label":"10½","breakpointSize":"medium","isDefault":true},"large":{"sizePx":16,"lineHeightPx":22,"label":"12","breakpointSize":"large"},"extra-large":{"sizePx":21,"oldFloatSizePx":21.333333333333332,"lineHeightPx":29,"label":"15¾","breakpointSize":"extra-large"}}},"worksheet":{"name":"Funktionsgleichungen zeichnen & ablesen","format":"a4Portrait","fontSize":"medium","pages":[{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"Info"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Funktionsgleichungen zeichnen & ablesen"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Funktionen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"R"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"8"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"26.04.2024"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/funktionsgleichungen-zeichnen-ablesen-2"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"1"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"1"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"35cc6f63-406e-43e9-ac63-d3d22362b056","z":17,"templateName":"headline","title":"Überschrift - Funktionsgleichungen zeichnen & ablesen","x":0,"y":0,"width":170,"height":10,"busData":{"stylesOutput":{"--top":0,"--left":0,"--width":170,"--height":10,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"h1","attrs":{"className":"isUnderlined"},"children":[{"tag":"span","attrs":{"className":"enumeration"},"children":[]},{"tag":"#","children":" "},{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Funktionsgleichung in ein Koordinatensystem "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"einzeichnen"}]}]}]},false]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119503317,"attrs":{"viewBox":"0 0 642.5196850393702 37.795275590551185","width":642.5196850393702,"height":37.795275590551185,"key":1714119503317,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-35cc6f63-406e-43e9-ac63-d3d22362b056"},"children":[{"tag":"path","attrs":{"d":"M3.0376728624105453 -0.4932585805654526 L640.4347425644089 -2.258208855986595 L644.5199977104355 34.88822058512001 L1.5478328317403793 41.23389653040199","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-headline font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"77b63bc2-7ba7-4b84-a5c7-4f7fc45e6b55","z":3,"templateName":"hint","license":"cc-zero","licenseVersion":"4.0","title":"Hinweis - Funktionsgleichungen zeichnen & ablesen","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":9,"width":170,"height":43.5,"busData":{"stylesOutput":{"--top":9,"--left":0,"--width":170,"--height":43.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon directionRight"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Vorgehen"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"1. "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Zeichne"}]},{"tag":"#","children":" ein "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Koordinatensystem"}]},{"tag":"#","children":"."},{"tag":"em","attrs":{},"children":[{"tag":"#","children":" Beschrifte das KOS und die x-Achse und die y-Achse!"}]}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"2. "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Zeichne "}]},{"tag":"#","children":"den "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Punkt (0|"},{"tag":"span","attrs":{"className":"color3"},"children":[{"tag":"#","children":"b"}]},{"tag":"#","children":")"}]},{"tag":"#","children":" auf der"},{"tag":"span","attrs":{"className":"color3"},"children":[{"tag":"#","children":" y-Achse"}]},{"tag":"#","children":" ein."}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"3. Stelle die "},{"tag":"strong","attrs":{},"children":[{"tag":"span","attrs":{"className":"color2"},"children":[{"tag":"#","children":"Steigung m"}]},{"tag":"#","children":" "}]},{"tag":"#","children":"als "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Bruch "}]},{"tag":"#","children":"dar:"}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"4. "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Zeichne "}]},{"tag":"#","children":"die "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Steigung "}]},{"tag":"#","children":"ein:\t\t\t"}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"- "},{"tag":"#","children":"Der "},{"tag":"strong","attrs":{},"children":[{"tag":"span","attrs":{"className":"color2"},"children":[{"tag":"#","children":"Nenner "}]}]},{"tag":"#","children":"gibt die Schritte "},{"tag":"u","attrs":{"className":"underlineColor3"},"children":[{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"von "}]},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Punkt (0|"},{"tag":"span","attrs":{"className":"color3"},"children":[{"tag":"#","children":"b"}]},{"tag":"#","children":")"}]},{"tag":"#","children":" "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"aus "}]}]},{"tag":"#","children":"auf der "},{"tag":"strong","attrs":{},"children":[{"tag":"span","attrs":{"className":"color2"},"children":[{"tag":"#","children":"x-Achse "}]}]},{"tag":"#","children":" an."}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"- "},{"tag":"#","children":"Der "},{"tag":"strong","attrs":{},"children":[{"tag":"span","attrs":{"className":"color2"},"children":[{"tag":"#","children":"Zähler "}]}]},{"tag":"#","children":" gibt die Schritte anschließend auf der "},{"tag":"strong","attrs":{},"children":[{"tag":"span","attrs":{"className":"color2"},"children":[{"tag":"#","children":"y-Achse"}]}]},{"tag":"#","children":" an."}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 642.5196850393702 164.40944881889766","width":642.5196850393702,"height":164.40944881889766,"key":1714119342187,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-hint isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle symbol-directionRight","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"28aeea36-0beb-4785-b7e4-77d8324f6a7a","z":0,"templateName":"hint","title":"Hinweis - Funktionsgleichungen zeichnen & ablesen","x":0,"y":53,"width":170,"height":67.5,"busData":{"stylesOutput":{"--top":53,"--left":0,"--width":170,"--height":67.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon paperclip"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Beispiel:"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 642.5196850393702 255.1181102362205","width":642.5196850393702,"height":255.1181102362205,"key":1714119342187,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-hint isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle symbol-paperclip","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"013658a7-884b-44f1-9c97-bc290d7e4d5f","z":1,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Bild - Funktionsgleichungen zeichnen & ablesen","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":97.5,"y":55.5,"width":60.7031,"height":65.5,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":55.5,"--left":97.5,"--width":60.7031,"--height":65.5,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"65.5mm","width":"calc(60.7031mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:-0px;top:0px;width:229px;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/1EA8733F-2701-4A74-8284-2ECDFF44977D_81ebc087-ac48-4c33-9284-3e8d405d0889.jpeg?width=687","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "},"oncreate":false,"onupdate":false},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 229.42903937007875 247.55905511811025","width":229.42903937007875,"height":247.55905511811025,"key":1714119342187,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-013658a7-884b-44f1-9c97-bc290d7e4d5f"},"children":[{"tag":"path","attrs":{"d":"M2.600221484899521 3.29129758477211 L231.65475390459986 -2.5337041318416595 L228.99689124133081 251.33673232629545 L0.25651630759239197 245.85773891046293","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"072df2ce-13e1-401d-8a2e-dd170ed9f9d9","z":2,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Bild - Funktionsgleichungen zeichnen & ablesen","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":50.306408,"y":58.5,"width":33.2319,"height":29.5,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":58.5,"--left":50.306408,"--width":33.2319,"--height":29.5,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"29.5mm","width":"calc(33.2319mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:7px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/2C55ED0E-6CF5-4465-A61A-2630671F19BD_65e016cc-b27c-4e2e-a9bd-c7093ac2695f.jpeg","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 125.6008818897638 111.496062992126","width":125.6008818897638,"height":111.496062992126,"key":1714119342187,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-072df2ce-13e1-401d-8a2e-dd170ed9f9d9"},"children":[{"tag":"path","attrs":{"d":"M-3.0232924185693264 -1.348336759954691 L128.03714211687776 0.7174230180680752 L124.32738705382081 110.62683718836333 L1.6012265719473362 108.30391746199156","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"564e84ca-eff8-4257-8c30-3a9febf0102f","z":14,"templateName":"hint","title":"Hinweis - Funktionsgleichungen zeichnen & ablesen","x":6.6296296,"y":71,"width":34.915833,"height":37.5,"busData":{"stylesOutput":{"--top":71,"--left":6.6296296,"--width":34.915833,"--height":37.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon eyeRealistic"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Erklärvideo"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 131.96535307086614 141.73228346456693","width":131.96535307086614,"height":141.73228346456693,"key":1714119342187,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-hint isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle symbol-eyeRealistic","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"d2e464f6-6d35-4261-82d0-f30a24485926","z":18,"templateName":"youtube","title":"YouTube-Video - Funktionsgleichungen zeichnen & ablesen","x":13.5,"y":82,"width":21.5,"height":22.5,"busData":{"stylesOutput":{"--top":82,"--left":13.5,"--width":21.5,"--height":22.5,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"className":"card "},"children":[{"tag":"div","attrs":{"className":"label"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"description"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"qrCode"},"children":[{"tag":"a","attrs":{"active":false,"disabled":false,"href":"https://www.youtube-nocookie.com/embed/TKK-25nz-cE","rel":"noopener noreferrer","target":"youtube"},"children":[{"tag":"<","children":""}]},{"tag":"a","attrs":{"href":"https://www.youtube-nocookie.com/embed/TKK-25nz-cE","target":"youtube","className":"icon-button icon play"},"children":[{"tag":"<","children":""}]},{"tag":"#","children":"YouTube-Video"}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119900495,"attrs":{"viewBox":"0 0 81.25984251968505 85.03937007874016","width":81.25984251968505,"height":85.03937007874016,"key":1714119900495,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-d2e464f6-6d35-4261-82d0-f30a24485926"},"children":[{"tag":"path","attrs":{"d":"M3.76943251863122 2.27710684761405 L79.48448369748833 -2.345706257969141 L83.67306409127953 85.65785251572494 L-1.234284307807684 88.90154789402847","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-youtube font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-red fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"0e24a9e4-e4c1-45ba-9dea-f9127f3848c3","z":8,"templateName":"hint","title":"Hinweis - Funktionsgleichungen zeichnen & ablesen","x":50.306465,"y":86.5,"width":34.0117,"height":26.5,"busData":{"stylesOutput":{"--top":86.5,"--left":50.306465,"--width":34.0117,"--height":26.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon bolt"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Merke"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 128.54815748031496 100.15748031496064","width":128.54815748031496,"height":100.15748031496064,"key":1714119342187,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-hint isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-red fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle symbol-bolt","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"0e5d249f-6a96-4bc5-b12e-7ee2afb5f3df","z":9,"templateName":"formula","title":"Formel - Funktionsgleichungen zeichnen & ablesen","x":55.112,"y":95.5,"width":24.102293,"height":15,"busData":{"stylesOutput":{"--top":95.5,"--left":55.112,"--width":24.102293,"--height":15,"--border-radius":0,"--line-height":"29px","--base-line-height":"29px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"21px","--fontFeatures":"","--font-offset-top":"2.1px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"21px","--cloze-line-height":"42px","--cloze-height":"42px","--cloze-font-offset-top":"2.1px","--cloze-baseline-bottom-offset":"12.6px","--tab-size":2},"worksheetOutput":{"tag":"<","children":"m=xy"}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 91.09528062992126 56.69291338582678","width":91.09528062992126,"height":56.69291338582678,"key":1714119342187,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-0e5d249f-6a96-4bc5-b12e-7ee2afb5f3df"},"children":[{"tag":"path","attrs":{"d":"M0.07187402248382568 -2.5690606832504272 L87.96703944854767 -3.3300660848617554 L89.47529826812774 58.524327250916194 L-3.82131826877594 53.838761302429866","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":29,"fontSizePx":21,"className":"tile-formula font-likeWorksheet fontSize-extra-large hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"extra-large"}},{"id":"2cbb5271-b295-4cad-9976-057d7b82313d","z":11,"templateName":"headline","title":"Überschrift - Funktionsgleichungen zeichnen & ablesen","x":0,"y":122,"width":170,"height":10,"busData":{"stylesOutput":{"--top":122,"--left":0,"--width":170,"--height":10,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"h1","attrs":{"className":"isUnderlined"},"children":[{"tag":"span","attrs":{"className":"enumeration"},"children":[]},{"tag":"#","children":" "},{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Funktionsgleichung aus einem Koordinatensystem ablesen"}]}]},false]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 642.5196850393702 37.795275590551185","width":642.5196850393702,"height":37.795275590551185,"key":1714119342187,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-2cbb5271-b295-4cad-9976-057d7b82313d"},"children":[{"tag":"path","attrs":{"d":"M1.0115286633372307 3.500107951462269 L644.2306100745488 -3.937626890838146 L641.3320373912145 36.855651467275905 L3.403945378959179 37.64266332907705","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-headline font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"6d438778-a397-48ce-8192-1fbc1ebf1ae5","z":10,"templateName":"hint","title":"Hinweis - Funktionsgleichungen zeichnen & ablesen","x":0,"y":131,"width":170,"height":27.5,"busData":{"stylesOutput":{"--top":131,"--left":0,"--width":170,"--height":27.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon directionRight"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Vorgehen"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"1. "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Lese "}]},{"tag":"#","children":"den \t\t"},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"y-Achsenabschnitt"}]},{"tag":"#","children":" "},{"tag":"strong","attrs":{},"children":[{"tag":"span","attrs":{"className":"color3"},"children":[{"tag":"#","children":"b"}]}]},{"tag":"#","children":" ab."}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"2. "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Lese "}]},{"tag":"#","children":"die "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Steigung "}]},{"tag":"strong","attrs":{},"children":[{"tag":"span","attrs":{"className":"color2"},"children":[{"tag":"#","children":"m"}]}]},{"tag":"#","children":" ab."}]},{"tag":"p","attrs":{"className":"empty"},"children":[{"tag":"<","children":""}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"3. "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Setze"}]},{"tag":"#","children":" diese "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"in "}]},{"tag":"#","children":"die allgemeine Formel \t\t"},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"y = "},{"tag":"span","attrs":{"className":"color2"},"children":[{"tag":"#","children":"m"}]},{"tag":"#","children":"x + "},{"tag":"span","attrs":{"className":"color3"},"children":[{"tag":"#","children":"b"}]}]},{"tag":"#","children":" "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"ein"}]},{"tag":"#","children":"."}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 642.5196850393702 103.93700787401576","width":642.5196850393702,"height":103.93700787401576,"key":1714119342187,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-hint isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle symbol-directionRight","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"81f33ff3-25ae-4f00-844a-6e53410b5b60","z":4,"templateName":"hint","title":"Hinweis - Funktionsgleichungen zeichnen & ablesen","x":0,"y":160,"width":170,"height":71,"busData":{"stylesOutput":{"--top":160,"--left":0,"--width":170,"--height":71,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon paperclip"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Beispiel: "}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 642.5196850393702 268.3464566929134","width":642.5196850393702,"height":268.3464566929134,"key":1714119342187,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-hint isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle symbol-paperclip","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"e647e4a0-cabb-45e8-8947-97819887e260","z":6,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Bild - Funktionsgleichungen zeichnen & ablesen","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":42.97041,"y":164.5,"width":67.9824,"height":59,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":164.5,"--left":42.97041,"--width":67.9824,"--height":59,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"59mm","width":"calc(67.9824mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:2px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/48783CDE-8556-469A-8F8B-36E34DC06280_daa64c62-a689-4de3-8494-e998971acec1.jpeg","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 256.9413543307087 222.992125984252","width":256.9413543307087,"height":222.992125984252,"key":1714119342187,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-e647e4a0-cabb-45e8-8947-97819887e260"},"children":[{"tag":"path","attrs":{"d":"M3.637183602899313 2.4896955527365208 L253.03538047530265 -1.2639743052423 L259.63766597964377 224.65173172947814 L-1.1710721887648106 222.16650211808135","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"469c116a-354a-4f84-bd5a-de00f1149b45","z":5,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Bild - Funktionsgleichungen zeichnen & ablesen","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":114.88142,"y":165,"width":50.4424,"height":31.5,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":165,"--left":114.88142,"--width":50.4424,"--height":31.5,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"31.5mm","width":"calc(50.4424mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:0px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/40B1B216-9099-4D53-AA2E-5C4082F757AF_96099ceb-00aa-4c11-ba2e-2d3fd9a276e2.jpeg","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 190.6484409448819 119.05511811023624","width":190.6484409448819,"height":119.05511811023624,"key":1714119342187,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-469c116a-354a-4f84-bd5a-de00f1149b45"},"children":[{"tag":"path","attrs":{"d":"M-1.8709456734359264 -0.41860242560505867 L192.29075456309485 -3.8793352432549 L187.25691378760504 118.64770919850142 L-2.035578351467848 115.65251440575392","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"561baebf-3a13-4825-9d7d-f60fb2c7f007","z":13,"templateName":"hint","title":"Hinweis - Funktionsgleichungen zeichnen & ablesen","x":4.131397,"y":177.5,"width":34.915833,"height":37.5,"busData":{"stylesOutput":{"--top":177.5,"--left":4.131397,"--width":34.915833,"--height":37.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon eyeRealistic"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Erklärvideo"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 131.96535307086614 141.73228346456693","width":131.96535307086614,"height":141.73228346456693,"key":1714119342187,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-hint isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle symbol-eyeRealistic","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"55d379b5-9f4a-4e9f-a72b-221b687dbab4","z":19,"templateName":"youtube","title":"YouTube-Video - Funktionsgleichungen zeichnen & ablesen","x":11,"y":188.5,"width":21.5,"height":22.5,"busData":{"stylesOutput":{"--top":188.5,"--left":11,"--width":21.5,"--height":22.5,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"className":"card "},"children":[{"tag":"div","attrs":{"className":"label"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"description"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"qrCode"},"children":[{"tag":"a","attrs":{"active":false,"disabled":false,"href":"https://www.youtube-nocookie.com/embed/4aUyOgoYJpc","rel":"noopener noreferrer","target":"youtube"},"children":[{"tag":"<","children":""}]},{"tag":"a","attrs":{"href":"https://www.youtube-nocookie.com/embed/4aUyOgoYJpc","target":"youtube","className":"icon-button icon play"},"children":[{"tag":"<","children":""}]},{"tag":"#","children":"YouTube-Video"}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714120038349,"attrs":{"viewBox":"0 0 81.25984251968505 85.03937007874016","width":81.25984251968505,"height":85.03937007874016,"key":1714120038349,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-55d379b5-9f4a-4e9f-a72b-221b687dbab4"},"children":[{"tag":"path","attrs":{"d":"M-2.101305328309536 -0.10950282961130142 L83.4487543525541 -3.0369155779480934 L78.30797938726785 83.65410516798262 L3.8774928227066994 87.49541495382552","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-youtube font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-red fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"4ffc850d-513c-4eeb-892b-9d423398c5b4","z":7,"templateName":"postIt","title":"Klebezettel - Funktionsgleichungen zeichnen & ablesen","x":122.51842,"y":203,"width":35.5329,"height":18.5,"busData":{"postItCount":1,"stylesOutput":{"--top":203,"--left":122.51842,"--width":35.5329,"--height":18.5,"--border-radius":0,"--line-height":"16px","--base-line-height":"16px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"12px","--fontFeatures":"","--font-offset-top":"1.2px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"12px","--cloze-line-height":"24px","--cloze-height":"24px","--cloze-font-offset-top":"1.2px","--cloze-baseline-bottom-offset":"7.2px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"className":"inner rotate-right backgroundColor-red"},"children":[{"tag":"div","attrs":{"className":"postItText"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Hier nimmst du das "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Minus entweder "}]},{"tag":"#","children":"zum "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Nenner ODER "}]},{"tag":"#","children":"zum "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Zähler"}]},{"tag":"#","children":"."}]}]}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1714119342187,"attrs":{"viewBox":"0 0 134.29757480314962 69.92125984251969","width":134.29757480314962,"height":69.92125984251969,"key":1714119342187,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-4ffc850d-513c-4eeb-892b-9d423398c5b4"},"children":[{"tag":"path","attrs":{"d":"M2.9466322138905525 -3.116403289139271 L134.39440476140967 2.0789151713252068 L133.61180984220496 71.36083008319609 L1.4950876906514168 71.299175277059","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":16,"fontSizePx":12,"className":"tile-postIt isTextLike font-likeWorksheet fontSize-small hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"small"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-subjectArea-funktionen meta-phase-8 meta-subject-math meta-level-secondaryschoolleavingcertificate meta-materialForm-info","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--custom-goal:Ich kann Schaubilder und Funktionen lesen und beschreiben.\nIch kenne Eigenschaften linearer Funktionsgleichungen.\nIch kann lineare Funktionen anhand eines Steigungsdreiecks zeichnen.;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/funktionen.png\");"}]}}Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
Wenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen. Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
Einige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
Für Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
Wenden Sie sich für Rückfragen gern an: support@tutory.de