","zoomIn":"","zoomOut":"","info":"","sweep":"","fontStyle":"","hasSeen":"","downloadSolutionSheet":"","showSolution":"","checkmarkGreen":"","multipleChoice":""},"images":{"https://editor.mnweg.org/uploads/images/Balkentafel_1458e931-ac04-4f04-8342-8ee8c584499b.png?width=1917":""},"translations":{"editor.tile.task":"Aufgabenstellung","math.subtractionSign":"−","math.additionSign":"+","editor.tile.paper":"Linien und Kästchen","editor.tile.image":"Bild","digital.worksheet.prefix":"dAb","digital.worksheet.url":"/dAb/{slug}","digital.toolbar.zoomIn":"Vergrößern {shortcut}","digital.toolbar.zoomOut":"Verkleinern {shortcut}","digital.toolbar.markRightWrong":"Richtige und Falsche anzeigen","digital.toolbar.showSolution":"Lösungen anzeigen","digital.toolbar.scrollNextTask":"Scrollen zur nächsten Aufgabe","digital.toolbar.shareSolution":"Lösung teilen","digital.toolbar.copySolutionUrl":"Lösungs-URL kopieren","digital.toolbar.downloadSolution":"Lösung herunterladen","digital.solution.headline":"Bearbeitetes Dokument","digital.solution.studentId":"Stimmt diese Nummer nicht mit der im Dateinamen überein? Dann handelt es sich womöglich um eine Kopie eines bereits bearbeiteten Arbeitsblattes.
Mehr erfahren.","digital.toolbar.clearInput":"Eingaben löschen","digital.toolbar.clearInputAndSelectTile":"Eingaben löschen (wählen Sie einen Baustein)","digital.toolbar.infoTile":"Baustein-Information","digital.toolbar.infoTileAndSelectTile":"Baustein-Information (wählen Sie einen Baustein)","tile.digital.explanation.fallback.passive":"Du kannst hier nichts weiter tun.","tile.digital.explanation.fallback":"Tippe oder klicke – sofern vorhanden – auf die Lücken, um diese auszufüllen.","tile.digital.overflowMessage":"Text zu lang, bitte kürzen!","tile.allocateWords.digital.explanation":"Tippe oder klicke auf eine Lücke, wähle aus dem Dropdown aus bzw. gib die Wörter ein.","tile.paper.digital.explanation":"Gib einen Text ein.","tile.paper.digital.nonLined.explanation":"Hier kannst du leider nicht schreiben. Eingaben sind nur auf einfacher Lineatur möglich.","tile.multipleChoice.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.multipleChoiceTable.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.pairOfTask.lines.digital.explanation":"Um ein Paar zu bilden, tippe oder klicke auf einen Partner und tippe dann auf den dazugehörigen Partner auf der anderen Seite. Um ein Paar zu löschen, tippe auf einen der verbundenen Partner.","tile.pairOfTask.number.digital.explanation":"Um ein Paar zu bilden, klicke auf den rechten Partner und gib die Nummer des dazugehörigen Partners auf der linken Seite ein.","tile.sortTask.digital.explanation":"Tippe oder klicke auf die jeweilige Lücke links und gib eine Zahl ein, die die Reihenfolge kenzeichnet.","tile.wordSearchPuzzle.digital.explanation":"Tippe einzeln auf die jeweiligen Buchstaben, die zu einem Lösungswort gehören. Wenn du mit einer Maus bzw. am Computer bist, kannst du mehrere Buchstaben gleichzeitig markieren. Erneutes tippen oder klicken löscht die Markierung wieder.","tile.crosswordPuzzle.digital.explanation":"Tippe oder klicke auf das auszufüllende Feld und gib den Lösungsbuchstaben ein.","tile.mathplot.digital.explanation":"Hier kannst du aktuell leider noch nichts ausfüllen, eingeben oder einzeichnen.","tile.signature.digital.explanation":"Hier kannst du aktuell noch nichts ausfüllen oder eingeben.","tile.qrcode.digital.explanation":"Tippe oder klicke den Code an, um den Link dahinter aufzurufen bzw. den Inhalt anzuzeigen.","digital.solution.filename":"Lösung","digital.solution.text":"Lösung","digital.noScriptHint":"
Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
\nWenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen.\n Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
\nEinige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
\nFür Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
\n
Wenden Sie sich für Rückfragen gern an: support@tutory.de
","digital.noScriptWithLink":"Auf diesem Weg kann das digitale Arbeitsblatt leider nicht anzeigt werden.
\nDas kann daran liegen, dass Sie es von einem iPad aus öffnen oder es in der Vorschau von anderen Programmen sehen, die unsere digitalen Arbeitsblätter nicht öffnen wollen.
\nWas kann man tun?
\n\n 1) Ermöglichen Sie das Bereitstellen dieses Dokuments per Link. Mehr dazu finden Sie im Dialog zur Bereitstellung des digitalen AB auf MNW.
\n 2) Laden Sie das Dokument in einem Lernmanagementsystem hoch, von welchem aus Lernende es im Browser öffnen können. Ziel des Versuchs muss es also sein, dass Dokument von einem Browser öffnen zu lassen. Wenn das gelingt, so kann das Dokument auch zuverlässig angezeigt werden.\n
Melden Sie sich bei Rückfragen gern beim Materialnetzwerk eG-Support oder lesen Sie Details zur Sache auf https://mnweg.org/faqs
\nViele Grüße
\nIhr MNW-Team
"},"config":{"worksheetFormats":{"a4Portrait":{"code":"a4Portrait","name":"A4 (Hochformat)","grids":[{"id":"main","gutter":1,"columnCount":12,"columnWidth":13.25}],"gridGutter":0,"height":297,"width":210,"paddingTop":10,"paddingLeft":20,"paddingRight":20,"paddingBottom":10,"bindingPosition":"left","headerHeight":26,"headerMarginBottom":4,"footerHeight":12,"footerMarginTop":4,"logoMarginTop":6,"logoMarginLeft":6,"logoMaxWidth":20,"logoMaxHeight":20}},"defaultWorksheetFormat":"a4Portrait","fontDimensions":{"small":{"sizePx":12,"lineHeightPx":16,"label":"9","breakpointSize":"small"},"medium":{"sizePx":14,"lineHeightPx":18,"label":"10½","breakpointSize":"medium","isDefault":true},"large":{"sizePx":16,"lineHeightPx":22,"label":"12","breakpointSize":"large"},"extra-large":{"sizePx":21,"oldFloatSizePx":21.333333333333332,"lineHeightPx":29,"label":"15¾","breakpointSize":"extra-large"}}},"worksheet":{"name":"Sortieren mit Balkentafel III","format":"a4Portrait","fontSize":"medium","pages":[{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Sortieren mit Balkentafel III"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/sortieren-mit-balkentafel-iii"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"1"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"4"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"8a450382-7417-4eb9-8cd9-de3e609a7afc","z":1,"templateName":"task","license":"cc-zero","licenseVersion":"4.0","title":"Aufgabenstellung - Sortieren mit Balkentafel III","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":0,"width":170,"height":45,"busData":{"canHaveParentTask":false,"enumeration":1,"hasSolutionTile":null,"stylesOutput":{"--top":0,"--left":0,"--width":170,"--height":45,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"1"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Male die angegebenen Brüche in der Balkentafel auf der nächsten Seite an. Sortiere danach die Brüche der Größe nach. Beginne mit dem größten Bruch. Nutze in deiner Lösung das Zeichen "},{"tag":"quote","attrs":{},"children":[{"tag":"#","children":">"}]},{"tag":"#","children":". Schreibe die Lösung auf das karierte Papier auf dieser Seite."},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]}]}],{"tag":"div","attrs":{"className":"tile-main"},"children":[{"tag":"ul","attrs":{"className":"none"},"children":[{"tag":"li","key":"c99109ed-22a4-469f-b6b2-916b0a711456","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"21"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"181"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"31"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"71"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"151"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"51"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075806632,"attrs":{"viewBox":"0 0 642.5196850393702 170.07874015748033","width":642.5196850393702,"height":170.07874015748033,"key":1558075806632,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-8a450382-7417-4eb9-8cd9-de3e609a7afc"},"children":[{"tag":"path","attrs":{"d":"M0.8947703130543232 -0.542218554764986 L645.0878279787291 -1.1721742041409016 L644.4986769539107 169.9974469433678 L3.895261574536562 166.25020461186298","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"14aabe9a-1ef6-467d-9572-89e2aea2d03a","z":2,"templateName":"paper","license":"cc-pd","licenseUrl":"https://creativecommons.org/publicdomain/mark/1.0/","x":0,"y":45,"width":170,"height":186,"busData":{"stylesOutput":{"--top":45,"--left":0,"--width":170,"--height":186,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetSvgOutput":{"tag":"svg","attrs":{"width":642.5196850393702,"height":699.2125984251969},"children":[{"tag":"[","children":[{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":0,"y2":0,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":18.897637795275593,"y2":18.897637795275593,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":37.795275590551185,"y2":37.795275590551185,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":56.69291338582678,"y2":56.69291338582678,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":75.59055118110237,"y2":75.59055118110237,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":94.48818897637796,"y2":94.48818897637796,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":113.38582677165356,"y2":113.38582677165356,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":132.28346456692915,"y2":132.28346456692915,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":151.18110236220474,"y2":151.18110236220474,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":170.07874015748033,"y2":170.07874015748033,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":188.9763779527559,"y2":188.9763779527559,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":207.87401574803152,"y2":207.87401574803152,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":226.7716535433071,"y2":226.7716535433071,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":245.6692913385827,"y2":245.6692913385827,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":264.5669291338583,"y2":264.5669291338583,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":283.46456692913387,"y2":283.46456692913387,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":302.3622047244095,"y2":302.3622047244095,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":321.2598425196851,"y2":321.2598425196851,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":340.15748031496065,"y2":340.15748031496065,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":359.05511811023626,"y2":359.05511811023626,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":377.9527559055118,"y2":377.9527559055118,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":396.85039370078744,"y2":396.85039370078744,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":415.74803149606305,"y2":415.74803149606305,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":434.6456692913386,"y2":434.6456692913386,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":453.5433070866142,"y2":453.5433070866142,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":472.44094488188983,"y2":472.44094488188983,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":491.3385826771654,"y2":491.3385826771654,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":510.236220472441,"y2":510.236220472441,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":529.1338582677166,"y2":529.1338582677166,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":548.0314960629922,"y2":548.0314960629922,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":566.9291338582677,"y2":566.9291338582677,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":585.8267716535433,"y2":585.8267716535433,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":604.724409448819,"y2":604.724409448819,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":623.6220472440946,"y2":623.6220472440946,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":642.5196850393702,"y2":642.5196850393702,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":661.4173228346457,"y2":661.4173228346457,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":680.3149606299213,"y2":680.3149606299213,"fill":"none"},"children":[],"state":{}}]},{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":699.2125984251969,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":0,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":18.897637795275593,"x2":18.897637795275593,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":37.795275590551185,"x2":37.795275590551185,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":56.69291338582678,"x2":56.69291338582678,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":75.59055118110237,"x2":75.59055118110237,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":94.48818897637796,"x2":94.48818897637796,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":113.38582677165356,"x2":113.38582677165356,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":132.28346456692915,"x2":132.28346456692915,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":151.18110236220474,"x2":151.18110236220474,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":170.07874015748033,"x2":170.07874015748033,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":188.9763779527559,"x2":188.9763779527559,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":207.87401574803152,"x2":207.87401574803152,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":226.7716535433071,"x2":226.7716535433071,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":245.6692913385827,"x2":245.6692913385827,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":264.5669291338583,"x2":264.5669291338583,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":283.46456692913387,"x2":283.46456692913387,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":302.3622047244095,"x2":302.3622047244095,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":321.2598425196851,"x2":321.2598425196851,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":340.15748031496065,"x2":340.15748031496065,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":359.05511811023626,"x2":359.05511811023626,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":377.9527559055118,"x2":377.9527559055118,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":396.85039370078744,"x2":396.85039370078744,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":415.74803149606305,"x2":415.74803149606305,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":434.6456692913386,"x2":434.6456692913386,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":453.5433070866142,"x2":453.5433070866142,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":472.44094488188983,"x2":472.44094488188983,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":491.3385826771654,"x2":491.3385826771654,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":510.236220472441,"x2":510.236220472441,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":529.1338582677166,"x2":529.1338582677166,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":548.0314960629922,"x2":548.0314960629922,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":566.9291338582677,"x2":566.9291338582677,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":585.8267716535433,"x2":585.8267716535433,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":604.724409448819,"x2":604.724409448819,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":623.6220472440946,"x2":623.6220472440946,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"line","attrs":{"className":"checkered","x1":642.5196850393702,"x2":642.5196850393702,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]}]},"worksheetContentOutput":{"tag":"div","attrs":{"className":"eduMark text checkered","style":"\n --font-size: 22px;\n --cloze-font-size: 22px;\n --line-height: 19px;\n --cloze-line-height: 19px;\n "},"children":[]},"fontSizeInPx":22,"isInteractive":false},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075806631,"attrs":{"viewBox":"0 0 642.5196850393702 702.9921259842521","width":642.5196850393702,"height":702.9921259842521,"key":1558075806631,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-14aabe9a-1ef6-467d-9572-89e2aea2d03a"},"children":[{"tag":"path","attrs":{"d":"M2.3406077213585377 -0.5246823020279408 L643.5802838486422 -3.8348776288330555 L641.1416636389483 704.5211062207526 L-2.5950038842856884 703.5596276297873","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-paper font-likeWorksheet hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle backwards-flag-taskSolutionContainerEdumarkRestricted","config":{"visibility":"visible","hasBackground":false,"paperType":"checkered","text":"","taskTileId":"no task","enumerationLabel":"Lösung","showSolutionInPaper":false,"lineEnumerationType":"none","omitTrailingLine":true,"showTask":true,"showEnumeration":true,"font":"likeWorksheet","background":{"borderStyle":"none","fillStyle":"none","color":"grey","fillTone":"dark","borderWidth":"S","borderRadius":true},"lineHeight":5,"strokeWidth":"L","tabSize":2,"backwardsCompatibleFlags":["taskSolutionContainerEdumarkRestricted"],"clozeStyle":"likeWorksheet"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"},{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Sortieren mit Balkentafel III"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/sortieren-mit-balkentafel-iii"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"2"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"4"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"a7ebc95e-056f-4112-bd2c-4b57abc778ba","z":1,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Eigenes Bild - Sortieren mit Balkentafel III","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":1,"y":6,"width":169,"height":219,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":6,"--left":1,"--width":169,"--height":219,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"219mm","width":"calc(169mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:2px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Balkentafel_1458e931-ac04-4f04-8342-8ee8c584499b.png","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075806632,"attrs":{"viewBox":"0 0 638.740157480315 827.7165354330709","width":638.740157480315,"height":827.7165354330709,"key":1558075806632,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-a7ebc95e-056f-4112-bd2c-4b57abc778ba"},"children":[{"tag":"path","attrs":{"d":"M3.6057840026915073 -1.200406078249216 L637.9383543124056 0.15928184613585472 L639.4341523041583 831.5406771701446 L3.145790282636881 830.1592685979476","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"},{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Sortieren mit Balkentafel III"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/sortieren-mit-balkentafel-iii"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"3"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"4"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"e2df1f87-6eed-4025-a6b9-bc75ee6b9c97","z":2,"templateName":"task","license":"cc-zero","licenseVersion":"4.0","title":"Aufgabenstellung - Sortieren mit Balkentafel III","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":0,"width":170,"height":45,"busData":{"canHaveParentTask":true,"enumeration":2,"hasSolutionTile":null,"stylesOutput":{"--top":0,"--left":0,"--width":170,"--height":45,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"2"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Male die angegebenen Brüche in der Balkentafel auf der nächsten Seite an. Sortiere danach die Brüche der Größe nach. Beginne mit dem größten Bruch. Nutze in deiner Lösung das Zeichen "},{"tag":"quote","attrs":{},"children":[{"tag":"#","children":">"}]},{"tag":"#","children":". Schreibe die Lösung auf das karierte Papier auf dieser Seite."},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]}]}],{"tag":"div","attrs":{"className":"tile-main"},"children":[{"tag":"ul","attrs":{"className":"none"},"children":[{"tag":"li","key":"c99109ed-22a4-469f-b6b2-916b0a711456","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"201"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"101"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"241"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"51"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"91"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"<","children":"61"},{"tag":"#","children":" "},{"tag":"<","children":""},{"tag":"#","children":" "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075806632,"attrs":{"viewBox":"0 0 642.5196850393702 170.07874015748033","width":642.5196850393702,"height":170.07874015748033,"key":1558075806632,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-e2df1f87-6eed-4025-a6b9-bc75ee6b9c97"},"children":[{"tag":"path","attrs":{"d":"M-2.8427954018115997 -0.5768408477306366 L645.835124233811 -0.4346451461315155 L645.7638361249853 168.49579388677606 L-2.3994331657886505 171.04039437353143","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"b9e2c66b-735d-4eb4-81b3-83886ca4bda3","z":3,"templateName":"paper","license":"cc-pd","licenseUrl":"https://creativecommons.org/publicdomain/mark/1.0/","x":0,"y":45,"width":170,"height":185,"busData":{"stylesOutput":{"--top":45,"--left":0,"--width":170,"--height":185,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetSvgOutput":{"tag":"svg","attrs":{"width":642.5196850393702,"height":699.2125984251969},"children":[{"tag":"[","children":[{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":0,"y2":0,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":18.897637795275593,"y2":18.897637795275593,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":37.795275590551185,"y2":37.795275590551185,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":56.69291338582678,"y2":56.69291338582678,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":75.59055118110237,"y2":75.59055118110237,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":94.48818897637796,"y2":94.48818897637796,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":113.38582677165356,"y2":113.38582677165356,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":132.28346456692915,"y2":132.28346456692915,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":151.18110236220474,"y2":151.18110236220474,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":170.07874015748033,"y2":170.07874015748033,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":188.9763779527559,"y2":188.9763779527559,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":207.87401574803152,"y2":207.87401574803152,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":226.7716535433071,"y2":226.7716535433071,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":245.6692913385827,"y2":245.6692913385827,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":264.5669291338583,"y2":264.5669291338583,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":283.46456692913387,"y2":283.46456692913387,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":302.3622047244095,"y2":302.3622047244095,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":321.2598425196851,"y2":321.2598425196851,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":340.15748031496065,"y2":340.15748031496065,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":359.05511811023626,"y2":359.05511811023626,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":377.9527559055118,"y2":377.9527559055118,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":396.85039370078744,"y2":396.85039370078744,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":415.74803149606305,"y2":415.74803149606305,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":434.6456692913386,"y2":434.6456692913386,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":453.5433070866142,"y2":453.5433070866142,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":472.44094488188983,"y2":472.44094488188983,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":491.3385826771654,"y2":491.3385826771654,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":510.236220472441,"y2":510.236220472441,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":529.1338582677166,"y2":529.1338582677166,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":548.0314960629922,"y2":548.0314960629922,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":566.9291338582677,"y2":566.9291338582677,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":585.8267716535433,"y2":585.8267716535433,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":604.724409448819,"y2":604.724409448819,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":623.6220472440946,"y2":623.6220472440946,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":642.5196850393702,"y2":642.5196850393702,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":661.4173228346457,"y2":661.4173228346457,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":680.3149606299213,"y2":680.3149606299213,"fill":"none"},"children":[],"state":{}}]},{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":642.5196850393702,"y1":699.2125984251969,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":0,"x2":0,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":18.897637795275593,"x2":18.897637795275593,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":37.795275590551185,"x2":37.795275590551185,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":56.69291338582678,"x2":56.69291338582678,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":75.59055118110237,"x2":75.59055118110237,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":94.48818897637796,"x2":94.48818897637796,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":113.38582677165356,"x2":113.38582677165356,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":132.28346456692915,"x2":132.28346456692915,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":151.18110236220474,"x2":151.18110236220474,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":170.07874015748033,"x2":170.07874015748033,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":188.9763779527559,"x2":188.9763779527559,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":207.87401574803152,"x2":207.87401574803152,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":226.7716535433071,"x2":226.7716535433071,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":245.6692913385827,"x2":245.6692913385827,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":264.5669291338583,"x2":264.5669291338583,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":283.46456692913387,"x2":283.46456692913387,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":302.3622047244095,"x2":302.3622047244095,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":321.2598425196851,"x2":321.2598425196851,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":340.15748031496065,"x2":340.15748031496065,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":359.05511811023626,"x2":359.05511811023626,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":377.9527559055118,"x2":377.9527559055118,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":396.85039370078744,"x2":396.85039370078744,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":415.74803149606305,"x2":415.74803149606305,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":434.6456692913386,"x2":434.6456692913386,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":453.5433070866142,"x2":453.5433070866142,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":472.44094488188983,"x2":472.44094488188983,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":491.3385826771654,"x2":491.3385826771654,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":510.236220472441,"x2":510.236220472441,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":529.1338582677166,"x2":529.1338582677166,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":548.0314960629922,"x2":548.0314960629922,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":566.9291338582677,"x2":566.9291338582677,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":585.8267716535433,"x2":585.8267716535433,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":604.724409448819,"x2":604.724409448819,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"checkered","x1":623.6220472440946,"x2":623.6220472440946,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]},{"tag":"line","attrs":{"className":"checkered","x1":642.5196850393702,"x2":642.5196850393702,"y1":0,"y2":699.2125984251969,"fill":"none"},"children":[],"state":{}}]}]},"worksheetContentOutput":{"tag":"div","attrs":{"className":"eduMark text checkered","style":"\n --font-size: 22px;\n --cloze-font-size: 22px;\n --line-height: 19px;\n --cloze-line-height: 19px;\n "},"children":[]},"fontSizeInPx":22,"isInteractive":false},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075806632,"attrs":{"viewBox":"0 0 642.5196850393702 699.2125984251969","width":642.5196850393702,"height":699.2125984251969,"key":1558075806632,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-b9e2c66b-735d-4eb4-81b3-83886ca4bda3"},"children":[{"tag":"path","attrs":{"d":"M3.791374519467354 -2.560570791363716 L641.2070151214291 -3.889608934521675 L639.206806743591 695.264382866072 L-0.3132545202970505 698.1036491662734","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-paper font-likeWorksheet hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle backwards-flag-taskSolutionContainerEdumarkRestricted","config":{"visibility":"visible","hasBackground":false,"paperType":"checkered","text":"","taskTileId":"no task","enumerationLabel":"Lösung","showSolutionInPaper":false,"lineEnumerationType":"none","omitTrailingLine":true,"showTask":true,"showEnumeration":true,"font":"likeWorksheet","background":{"borderStyle":"none","fillStyle":"none","color":"grey","fillTone":"dark","borderWidth":"S","borderRadius":true},"lineHeight":5,"strokeWidth":"L","tabSize":2,"backwardsCompatibleFlags":["taskSolutionContainerEdumarkRestricted"],"clozeStyle":"likeWorksheet"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"},{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Sortieren mit Balkentafel III"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/sortieren-mit-balkentafel-iii"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"4"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"4"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"8181a52f-9288-4efc-be4c-663966ad2df5","z":1,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Eigenes Bild - Sortieren mit Balkentafel III","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":1,"y":4,"width":169,"height":219,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":4,"--left":1,"--width":169,"--height":219,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"219mm","width":"calc(169mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:2px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Balkentafel_1458e931-ac04-4f04-8342-8ee8c584499b.png","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075806632,"attrs":{"viewBox":"0 0 638.740157480315 827.7165354330709","width":638.740157480315,"height":827.7165354330709,"key":1558075806632,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-8181a52f-9288-4efc-be4c-663966ad2df5"},"children":[{"tag":"path","attrs":{"d":"M-2.3088247179985046 -1.2779625058174133 L638.2120391679562 3.2009441256523132 L639.5140468431271 824.1299677331617 L0.7905576825141907 828.726428075569","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"}]}}Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
Wenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen. Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
Einige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
Für Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
Wenden Sie sich für Rückfragen gern an: support@tutory.de