","zoomIn":"","zoomOut":"","info":"","sweep":"","fontStyle":"","hasSeen":"","downloadSolutionSheet":"","showSolution":"","checkmarkGreen":"","multipleChoice":""},"images":{"https://editor.mnweg.org/uploads/images/Balkentafel-Teil_07f34654-7ea8-4521-88e1-df8cbe1b5333.png?width=1860":"","https://editor.mnweg.org/uploads/images/Tim-Maria-Fu-C3-9Fball_08e61a80-07f5-4fb1-99e8-67f003503c1f.png?width=1656":""},"translations":{"editor.tile.task":"Aufgabenstellung","math.subtractionSign":"−","math.additionSign":"+","editor.tile.image":"Bild","editor.tile.text":"Informationstext","editor.tile.paper":"Linien und Kästchen","digital.worksheet.prefix":"dAb","digital.worksheet.url":"/dAb/{slug}","digital.toolbar.zoomIn":"Vergrößern {shortcut}","digital.toolbar.zoomOut":"Verkleinern {shortcut}","digital.toolbar.markRightWrong":"Richtige und Falsche anzeigen","digital.toolbar.showSolution":"Lösungen anzeigen","digital.toolbar.scrollNextTask":"Scrollen zur nächsten Aufgabe","digital.toolbar.shareSolution":"Lösung teilen","digital.toolbar.copySolutionUrl":"Lösungs-URL kopieren","digital.toolbar.downloadSolution":"Lösung herunterladen","digital.solution.headline":"Bearbeitetes Dokument","digital.solution.studentId":"Stimmt diese Nummer nicht mit der im Dateinamen überein? Dann handelt es sich womöglich um eine Kopie eines bereits bearbeiteten Arbeitsblattes.
Mehr erfahren.","digital.toolbar.clearInput":"Eingaben löschen","digital.toolbar.clearInputAndSelectTile":"Eingaben löschen (wählen Sie einen Baustein)","digital.toolbar.infoTile":"Baustein-Information","digital.toolbar.infoTileAndSelectTile":"Baustein-Information (wählen Sie einen Baustein)","tile.digital.explanation.fallback.passive":"Du kannst hier nichts weiter tun.","tile.digital.explanation.fallback":"Tippe oder klicke – sofern vorhanden – auf die Lücken, um diese auszufüllen.","tile.digital.overflowMessage":"Text zu lang, bitte kürzen!","tile.allocateWords.digital.explanation":"Tippe oder klicke auf eine Lücke, wähle aus dem Dropdown aus bzw. gib die Wörter ein.","tile.paper.digital.explanation":"Gib einen Text ein.","tile.paper.digital.nonLined.explanation":"Hier kannst du leider nicht schreiben. Eingaben sind nur auf einfacher Lineatur möglich.","tile.multipleChoice.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.multipleChoiceTable.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.pairOfTask.lines.digital.explanation":"Um ein Paar zu bilden, tippe oder klicke auf einen Partner und tippe dann auf den dazugehörigen Partner auf der anderen Seite. Um ein Paar zu löschen, tippe auf einen der verbundenen Partner.","tile.pairOfTask.number.digital.explanation":"Um ein Paar zu bilden, klicke auf den rechten Partner und gib die Nummer des dazugehörigen Partners auf der linken Seite ein.","tile.sortTask.digital.explanation":"Tippe oder klicke auf die jeweilige Lücke links und gib eine Zahl ein, die die Reihenfolge kenzeichnet.","tile.wordSearchPuzzle.digital.explanation":"Tippe einzeln auf die jeweiligen Buchstaben, die zu einem Lösungswort gehören. Wenn du mit einer Maus bzw. am Computer bist, kannst du mehrere Buchstaben gleichzeitig markieren. Erneutes tippen oder klicken löscht die Markierung wieder.","tile.crosswordPuzzle.digital.explanation":"Tippe oder klicke auf das auszufüllende Feld und gib den Lösungsbuchstaben ein.","tile.mathplot.digital.explanation":"Hier kannst du aktuell leider noch nichts ausfüllen, eingeben oder einzeichnen.","tile.signature.digital.explanation":"Hier kannst du aktuell noch nichts ausfüllen oder eingeben.","tile.qrcode.digital.explanation":"Tippe oder klicke den Code an, um den Link dahinter aufzurufen bzw. den Inhalt anzuzeigen.","digital.solution.filename":"Lösung","digital.solution.text":"Lösung","digital.noScriptHint":"
Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
\nWenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen.\n Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
\nEinige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
\nFür Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
\n
Wenden Sie sich für Rückfragen gern an: support@tutory.de
","digital.noScriptWithLink":"Auf diesem Weg kann das digitale Arbeitsblatt leider nicht anzeigt werden.
\nDas kann daran liegen, dass Sie es von einem iPad aus öffnen oder es in der Vorschau von anderen Programmen sehen, die unsere digitalen Arbeitsblätter nicht öffnen wollen.
\nWas kann man tun?
\n\n 1) Ermöglichen Sie das Bereitstellen dieses Dokuments per Link. Mehr dazu finden Sie im Dialog zur Bereitstellung des digitalen AB auf MNW.
\n 2) Laden Sie das Dokument in einem Lernmanagementsystem hoch, von welchem aus Lernende es im Browser öffnen können. Ziel des Versuchs muss es also sein, dass Dokument von einem Browser öffnen zu lassen. Wenn das gelingt, so kann das Dokument auch zuverlässig angezeigt werden.\n
Melden Sie sich bei Rückfragen gern beim Materialnetzwerk eG-Support oder lesen Sie Details zur Sache auf https://mnweg.org/faqs
\nViele Grüße
\nIhr MNW-Team
"},"config":{"worksheetFormats":{"a4Portrait":{"code":"a4Portrait","name":"A4 (Hochformat)","grids":[{"id":"main","gutter":1,"columnCount":12,"columnWidth":13.25}],"gridGutter":0,"height":297,"width":210,"paddingTop":10,"paddingLeft":20,"paddingRight":20,"paddingBottom":10,"bindingPosition":"left","headerHeight":26,"headerMarginBottom":4,"footerHeight":12,"footerMarginTop":4,"logoMarginTop":6,"logoMarginLeft":6,"logoMaxWidth":20,"logoMaxHeight":20}},"defaultWorksheetFormat":"a4Portrait","fontDimensions":{"small":{"sizePx":12,"lineHeightPx":16,"label":"9","breakpointSize":"small"},"medium":{"sizePx":14,"lineHeightPx":18,"label":"10½","breakpointSize":"medium","isDefault":true},"large":{"sizePx":16,"lineHeightPx":22,"label":"12","breakpointSize":"large"},"extra-large":{"sizePx":21,"oldFloatSizePx":21.333333333333332,"lineHeightPx":29,"label":"15¾","breakpointSize":"extra-large"}}},"worksheet":{"name":"Anzahl und Anteile I","format":"a4Portrait","fontSize":"medium","pages":[{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Anzahl und Anteile I"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/anzahl-und-anteile-i"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"1"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"2"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"ce28bf57-e173-4ca6-8d7d-c7280ab64650","z":1,"templateName":"task","license":"cc-zero","licenseVersion":"4.0","title":"Aufgabenstellung - Anzahl und Anteile I","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":0,"width":170,"height":40,"busData":{"canHaveParentTask":false,"enumeration":1,"hasSolutionTile":null,"stylesOutput":{"--top":0,"--left":0,"--width":170,"--height":40,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"1"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"u","attrs":{},"children":[{"tag":"#","children":"Elfmeterschießen:"}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":" "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"In ihrer Freistunde wollen ein paar Schülerinnen und Schüler Fußballspielen. Schnell sind auch schon die Teams gebildet: Jungen gegen Mädchen."},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"Tim ist der Kapitän des Jungen-Teams mit insgesamt 8 Jungen. Maria ist Kapitän der Mädchen-Mannschaft mit insgesamt 5 Mädchen. "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"Nun geht es ans Elfmeterschießen. Dabei hat jeder genau einen Elfmeterschuss frei. Tims Team trifft 4 Mal und Marias Team trifft 3 Mal."}]}]}]}],false]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075851234,"attrs":{"viewBox":"0 0 642.5196850393702 151.18110236220474","width":642.5196850393702,"height":151.18110236220474,"key":1558075851234,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-ce28bf57-e173-4ca6-8d7d-c7280ab64650"},"children":[{"tag":"path","attrs":{"d":"M-0.9277590215206146 0.14427217841148376 L638.682009140103 -0.4533335268497467 L639.657010475247 151.01721757345314 L1.1173621714115143 151.37047856741066","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"7a8d9fda-c7f2-4330-9153-f449b4af4954","z":2,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Eigenes Bild - Anzahl und Anteile I","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":14,"y":35,"width":146,"height":36,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":35,"--left":14,"--width":146,"--height":36,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"36mm","width":"calc(146mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:34px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Tim-Maria-Fu-C3-9Fball_08e61a80-07f5-4fb1-99e8-67f003503c1f.png","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075851234,"attrs":{"viewBox":"0 0 551.8110236220473 136.06299212598427","width":551.8110236220473,"height":136.06299212598427,"key":1558075851234,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-7a8d9fda-c7f2-4330-9153-f449b4af4954"},"children":[{"tag":"path","attrs":{"d":"M-2.4802667312324047 3.0446166805922985 L550.5028124928886 3.3405843786895275 L549.1595673442298 139.6170055980347 L3.784309346228838 136.45944393822177","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"557e5d16-0491-4285-aa56-f1c75caf71a4","z":3,"templateName":"text","license":"cc-zero","licenseVersion":"4.0","title":"Informationstext - Anzahl und Anteile I","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":8,"y":68,"width":162,"height":17,"busData":{"stylesOutput":{"--top":68,"--left":8,"--width":162,"--height":17,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"style":"--column-count: 1","className":"text align-left"},"children":[{"tag":"div","attrs":{"className":"text-in-columns"},"children":[{"tag":"[","children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Wer hat nun gewonnen? Warum reicht es nicht, nur die Anzahl der Treffer miteinander zu vergleichen? Wie kann man die Anzahl der Treffer besser miteinander vergleichen? "}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Benutze für deine Antwort die Balkentafel. "}]}]},{"tag":"div","attrs":{"className":"originator sourceAlign-right"},"children":[]}]}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075851234,"attrs":{"viewBox":"0 0 612.2834645669292 64.25196850393701","width":612.2834645669292,"height":64.25196850393701,"key":1558075851234,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-557e5d16-0491-4285-aa56-f1c75caf71a4"},"children":[{"tag":"path","attrs":{"d":"M-2.0904823802411556 2.325023379176855 L611.4870008129011 1.8981293104588985 L612.8834097284208 64.20485886652756 L-2.0293073914945126 67.55487367232132","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-text isTextLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium","lineHeight":1}},{"id":"73f8c5e0-c35d-4a08-a1f8-db159803953a","z":4,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Eigenes Bild - Anzahl und Anteile I","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":4,"y":82,"width":164,"height":147,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":82,"--left":4,"--width":164,"--height":147,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"147mm","width":"calc(164mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:26px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Balkentafel-Teil_07f34654-7ea8-4521-88e1-df8cbe1b5333.png","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075851234,"attrs":{"viewBox":"0 0 619.8425196850394 555.5905511811025","width":619.8425196850394,"height":555.5905511811025,"key":1558075851234,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-73f8c5e0-c35d-4a08-a1f8-db159803953a"},"children":[{"tag":"path","attrs":{"d":"M-2.1167963184416294 -3.87508749589324 L621.4940054224526 -1.131969328969717 L618.5510409878289 558.6223581306285 L-3.646739427000284 555.8316704503841","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"},{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Anzahl und Anteile I"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/anzahl-und-anteile-i"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"2"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"2"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"087a52a9-12d0-4c77-b706-c7945fc5da31","z":1,"templateName":"paper","license":"cc-pd","licenseUrl":"https://creativecommons.org/publicdomain/mark/1.0/","x":0,"y":5,"width":170,"height":226,"busData":{"stylesOutput":{"--top":5,"--left":0,"--width":170,"--height":226,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetSvgOutput":{"tag":"svg","attrs":{"width":642.5196850393702,"height":838},"children":[{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":38,"y2":38,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":38,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":76,"y2":76,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":76,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":114,"y2":114,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":114,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":152,"y2":152,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":152,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":190,"y2":190,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":190,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":228,"y2":228,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":228,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":266,"y2":266,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":266,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":304,"y2":304,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":304,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":342,"y2":342,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":342,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":380,"y2":380,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":380,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":418,"y2":418,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":418,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":456,"y2":456,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":456,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":494,"y2":494,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":494,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":532,"y2":532,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":532,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":570,"y2":570,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":570,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":608,"y2":608,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":608,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":646,"y2":646,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":646,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":684,"y2":684,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":684,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":722,"y2":722,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":722,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":760,"y2":760,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":760,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":798,"y2":798,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":798,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":836,"y2":836,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":836,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]}]},"worksheetContentOutput":{"tag":"div","attrs":{"className":"eduMark text lined","style":"\n --font-size: 22px;\n --cloze-font-size: 22px;\n --line-height: 38px;\n --cloze-line-height: 38px;\n "},"children":[]},"fontSizeInPx":22,"isInteractive":true},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075851234,"attrs":{"viewBox":"0 0 642.5196850393702 854.1732283464568","width":642.5196850393702,"height":854.1732283464568,"key":1558075851234,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-087a52a9-12d0-4c77-b706-c7945fc5da31"},"children":[{"tag":"path","attrs":{"d":"M-0.3362617865204811 0.3073028698563576 L644.3365158756067 -3.7587040290236473 L646.117500038891 852.3010702139633 L-2.945213593542576 853.7678544527786","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-paper font-likeWorksheet hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle backwards-flag-taskSolutionContainerEdumarkRestricted","config":{"visibility":"visible","hasBackground":false,"paperType":"lined","text":"","taskTileId":"no task","enumerationLabel":"Lösung","showSolutionInPaper":false,"lineEnumerationType":"none","omitTrailingLine":true,"showTask":true,"showEnumeration":true,"font":"likeWorksheet","background":{"borderStyle":"none","fillStyle":"none","color":"grey","fillTone":"dark","borderWidth":"S","borderRadius":true},"strokeWidth":"L","tabSize":2,"backwardsCompatibleFlags":["taskSolutionContainerEdumarkRestricted"],"clozeStyle":"likeWorksheet"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"}]}}Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
Wenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen. Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
Einige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
Für Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
Wenden Sie sich für Rückfragen gern an: support@tutory.de