","zoomIn":"","zoomOut":"","info":"","sweep":"","fontStyle":"","hasSeen":"","downloadSolutionSheet":"","showSolution":"","checkmarkGreen":"","multipleChoice":""},"images":{"https://editor.mnweg.org/uploads/images/Kim-Alexander-Fu-C3-9Fball_e6b939d3-18c8-48dd-ad6b-26a3dd04ea53.png?width=1701":"","https://editor.mnweg.org/uploads/images/Balkentafel-Teil_07f34654-7ea8-4521-88e1-df8cbe1b5333.png?width=1860":""},"translations":{"editor.tile.task":"Aufgabenstellung","math.subtractionSign":"−","math.additionSign":"+","editor.tile.image":"Bild","editor.tile.text":"Informationstext","editor.tile.paper":"Linien und Kästchen","digital.worksheet.prefix":"dAb","digital.worksheet.url":"/dAb/{slug}","digital.toolbar.zoomIn":"Vergrößern {shortcut}","digital.toolbar.zoomOut":"Verkleinern {shortcut}","digital.toolbar.markRightWrong":"Richtige und Falsche anzeigen","digital.toolbar.showSolution":"Lösungen anzeigen","digital.toolbar.scrollNextTask":"Scrollen zur nächsten Aufgabe","digital.toolbar.shareSolution":"Lösung teilen","digital.toolbar.copySolutionUrl":"Lösungs-URL kopieren","digital.toolbar.downloadSolution":"Lösung herunterladen","digital.solution.headline":"Bearbeitetes Dokument","digital.solution.studentId":"Stimmt diese Nummer nicht mit der im Dateinamen überein? Dann handelt es sich womöglich um eine Kopie eines bereits bearbeiteten Arbeitsblattes.
Mehr erfahren.","digital.toolbar.clearInput":"Eingaben löschen","digital.toolbar.clearInputAndSelectTile":"Eingaben löschen (wählen Sie einen Baustein)","digital.toolbar.infoTile":"Baustein-Information","digital.toolbar.infoTileAndSelectTile":"Baustein-Information (wählen Sie einen Baustein)","tile.digital.explanation.fallback.passive":"Du kannst hier nichts weiter tun.","tile.digital.explanation.fallback":"Tippe oder klicke – sofern vorhanden – auf die Lücken, um diese auszufüllen.","tile.digital.overflowMessage":"Text zu lang, bitte kürzen!","tile.allocateWords.digital.explanation":"Tippe oder klicke auf eine Lücke, wähle aus dem Dropdown aus bzw. gib die Wörter ein.","tile.paper.digital.explanation":"Gib einen Text ein.","tile.paper.digital.nonLined.explanation":"Hier kannst du leider nicht schreiben. Eingaben sind nur auf einfacher Lineatur möglich.","tile.multipleChoice.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.multipleChoiceTable.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.pairOfTask.lines.digital.explanation":"Um ein Paar zu bilden, tippe oder klicke auf einen Partner und tippe dann auf den dazugehörigen Partner auf der anderen Seite. Um ein Paar zu löschen, tippe auf einen der verbundenen Partner.","tile.pairOfTask.number.digital.explanation":"Um ein Paar zu bilden, klicke auf den rechten Partner und gib die Nummer des dazugehörigen Partners auf der linken Seite ein.","tile.sortTask.digital.explanation":"Tippe oder klicke auf die jeweilige Lücke links und gib eine Zahl ein, die die Reihenfolge kenzeichnet.","tile.wordSearchPuzzle.digital.explanation":"Tippe einzeln auf die jeweiligen Buchstaben, die zu einem Lösungswort gehören. Wenn du mit einer Maus bzw. am Computer bist, kannst du mehrere Buchstaben gleichzeitig markieren. Erneutes tippen oder klicken löscht die Markierung wieder.","tile.crosswordPuzzle.digital.explanation":"Tippe oder klicke auf das auszufüllende Feld und gib den Lösungsbuchstaben ein.","tile.mathplot.digital.explanation":"Hier kannst du aktuell leider noch nichts ausfüllen, eingeben oder einzeichnen.","tile.signature.digital.explanation":"Hier kannst du aktuell noch nichts ausfüllen oder eingeben.","tile.qrcode.digital.explanation":"Tippe oder klicke den Code an, um den Link dahinter aufzurufen bzw. den Inhalt anzuzeigen.","digital.solution.filename":"Lösung","digital.solution.text":"Lösung","digital.noScriptHint":"
Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
\nWenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen.\n Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
\nEinige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
\nFür Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
\n
Wenden Sie sich für Rückfragen gern an: support@tutory.de
","digital.noScriptWithLink":"Auf diesem Weg kann das digitale Arbeitsblatt leider nicht anzeigt werden.
\nDas kann daran liegen, dass Sie es von einem iPad aus öffnen oder es in der Vorschau von anderen Programmen sehen, die unsere digitalen Arbeitsblätter nicht öffnen wollen.
\nWas kann man tun?
\n\n 1) Ermöglichen Sie das Bereitstellen dieses Dokuments per Link. Mehr dazu finden Sie im Dialog zur Bereitstellung des digitalen AB auf MNW.
\n 2) Laden Sie das Dokument in einem Lernmanagementsystem hoch, von welchem aus Lernende es im Browser öffnen können. Ziel des Versuchs muss es also sein, dass Dokument von einem Browser öffnen zu lassen. Wenn das gelingt, so kann das Dokument auch zuverlässig angezeigt werden.\n
Melden Sie sich bei Rückfragen gern beim Materialnetzwerk eG-Support oder lesen Sie Details zur Sache auf https://mnweg.org/faqs
\nViele Grüße
\nIhr MNW-Team
"},"config":{"worksheetFormats":{"a4Portrait":{"code":"a4Portrait","name":"A4 (Hochformat)","grids":[{"id":"main","gutter":1,"columnCount":12,"columnWidth":13.25}],"gridGutter":0,"height":297,"width":210,"paddingTop":10,"paddingLeft":20,"paddingRight":20,"paddingBottom":10,"bindingPosition":"left","headerHeight":26,"headerMarginBottom":4,"footerHeight":12,"footerMarginTop":4,"logoMarginTop":6,"logoMarginLeft":6,"logoMaxWidth":20,"logoMaxHeight":20}},"defaultWorksheetFormat":"a4Portrait","fontDimensions":{"small":{"sizePx":12,"lineHeightPx":16,"label":"9","breakpointSize":"small"},"medium":{"sizePx":14,"lineHeightPx":18,"label":"10½","breakpointSize":"medium","isDefault":true},"large":{"sizePx":16,"lineHeightPx":22,"label":"12","breakpointSize":"large"},"extra-large":{"sizePx":21,"oldFloatSizePx":21.333333333333332,"lineHeightPx":29,"label":"15¾","breakpointSize":"extra-large"}}},"worksheet":{"name":"Anzahl und Anteile II","format":"a4Portrait","fontSize":"medium","pages":[{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Anzahl und Anteile II"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/anzahl-und-anteile-ii"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"1"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"2"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"3d6cf75e-f197-49f8-8b7f-a1c80e35a44f","z":1,"templateName":"task","license":"cc-zero","licenseVersion":"4.0","title":"Aufgabenstellung - Anzahl und Anteile II","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":0,"width":170,"height":40,"busData":{"canHaveParentTask":false,"enumeration":1,"hasSolutionTile":null,"stylesOutput":{"--top":0,"--left":0,"--width":170,"--height":40,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"1"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"u","attrs":{},"children":[{"tag":"#","children":"Elfmeterschießen:"}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":" "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"Nach der Schule treffen sich ein paar Freunde und wollen Fußball spielen. Sie wollen ein wenig ihre Elfmeterschüsse verbessern. Dafür teilen sie sich in zwei 6er-Teams auf. Beim Elfmeterschießen hat jeder genau einen Versuch frei. Kims Team trifft 4 Mal und Alexanders Team trifft 3 Mal."}]}]}]}],false]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075862165,"attrs":{"viewBox":"0 0 642.5196850393702 151.18110236220474","width":642.5196850393702,"height":151.18110236220474,"key":1558075862165,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-3d6cf75e-f197-49f8-8b7f-a1c80e35a44f"},"children":[{"tag":"path","attrs":{"d":"M1.3825650848448277 1.7992105446755886 L644.2118870747079 -3.7155522145330906 L641.0987373125542 152.6133812300157 L1.5332281030714512 153.634865724225","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"090732b1-4e50-4acd-bafa-51f1fdd04dac","z":2,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Eigenes Bild - Anzahl und Anteile II","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":10,"y":22,"width":150,"height":38,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":22,"--left":10,"--width":150,"--height":38,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"38mm","width":"calc(150mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:44px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Kim-Alexander-Fu-C3-9Fball_e6b939d3-18c8-48dd-ad6b-26a3dd04ea53.png","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075862165,"attrs":{"viewBox":"0 0 566.9291338582677 143.62204724409452","width":566.9291338582677,"height":143.62204724409452,"key":1558075862165,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-090732b1-4e50-4acd-bafa-51f1fdd04dac"},"children":[{"tag":"path","attrs":{"d":"M-0.3159518912434578 -3.3137422129511833 L569.2787724916977 3.4064742997288704 L568.8500560705704 140.45815730699172 L3.868846110999584 144.69267130502334","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"32dffa9c-4b3a-43be-825b-2c8ed53439a5","z":3,"templateName":"text","license":"cc-zero","licenseVersion":"4.0","title":"Informationstext - Anzahl und Anteile II","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":8,"y":64,"width":162,"height":17,"busData":{"stylesOutput":{"--top":64,"--left":8,"--width":162,"--height":17,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"style":"--column-count: 1","className":"text align-left"},"children":[{"tag":"div","attrs":{"className":"text-in-columns"},"children":[{"tag":"[","children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Welches Team hat gewonnen? Warum reicht es hier, nur die Anzahl der Treffer miteinander zu vergleichen? Wieso ist es nicht zwingend nötig, die Balkentafel bzw. Anteile an Treffern zu vergleichen? "}]}]},{"tag":"div","attrs":{"className":"originator sourceAlign-right"},"children":[]}]}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075862165,"attrs":{"viewBox":"0 0 612.2834645669292 64.25196850393701","width":612.2834645669292,"height":64.25196850393701,"key":1558075862165,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-32dffa9c-4b3a-43be-825b-2c8ed53439a5"},"children":[{"tag":"path","attrs":{"d":"M1.3511135093867779 3.6002116091549397 L614.0980500850211 -0.14245618507266045 L615.7809549245368 67.60902058054495 L0.260789941996336 60.843258609071256","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-text isTextLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium","lineHeight":1}},{"id":"38e39ada-b337-440b-a6d9-666daead39f2","z":6,"templateName":"paper","license":"cc-pd","licenseUrl":"https://creativecommons.org/publicdomain/mark/1.0/","x":0,"y":85,"width":170,"height":140,"busData":{"stylesOutput":{"--top":85,"--left":0,"--width":170,"--height":140,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetSvgOutput":{"tag":"svg","attrs":{"width":642.5196850393702,"height":496},"children":[{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":38,"y2":38,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":38,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":76,"y2":76,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":76,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":114,"y2":114,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":114,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":152,"y2":152,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":152,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":190,"y2":190,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":190,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":228,"y2":228,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":228,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":266,"y2":266,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":266,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":304,"y2":304,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":304,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":342,"y2":342,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":342,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":380,"y2":380,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":380,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":418,"y2":418,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":418,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":456,"y2":456,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":456,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]},{"tag":"[","children":[{"tag":"line","attrs":{"className":"lined","x1":0,"x2":642.5196850393702,"y1":494,"y2":494,"fill":"none"},"children":[]},{"tag":"text","attrs":{"x":0,"y":494,"style":{"fontSize":"22px"},"className":"lineNumber"},"children":[{"tag":"#","children":""}]}]}]},"worksheetContentOutput":{"tag":"div","attrs":{"className":"eduMark text lined","style":"\n --font-size: 22px;\n --cloze-font-size: 22px;\n --line-height: 38px;\n --cloze-line-height: 38px;\n "},"children":[]},"fontSizeInPx":22,"isInteractive":true},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075862164,"attrs":{"viewBox":"0 0 642.5196850393702 529.1338582677166","width":642.5196850393702,"height":529.1338582677166,"key":1558075862164,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-38e39ada-b337-440b-a6d9-666daead39f2"},"children":[{"tag":"path","attrs":{"d":"M3.504036743193865 -0.6423692889511585 L642.7117380779971 -1.4077724404633045 L639.9362114351977 526.2795112585048 L1.8155183382332325 526.0195631240825","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-paper font-likeWorksheet hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle backwards-flag-taskSolutionContainerEdumarkRestricted","config":{"visibility":"visible","hasBackground":false,"paperType":"lined","text":"","taskTileId":"no task","enumerationLabel":"Lösung","showSolutionInPaper":false,"lineEnumerationType":"none","omitTrailingLine":true,"showTask":true,"showEnumeration":true,"font":"likeWorksheet","background":{"borderStyle":"none","fillStyle":"none","color":"grey","fillTone":"dark","borderWidth":"S","borderRadius":true},"strokeWidth":"L","tabSize":2,"backwardsCompatibleFlags":["taskSolutionContainerEdumarkRestricted"],"clozeStyle":"likeWorksheet"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"},{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Anzahl und Anteile II"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/anzahl-und-anteile-ii"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"2"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"2"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"b0081243-11d0-4510-81ea-bfabe9ecf053","z":2,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Eigenes Bild - Anzahl und Anteile II","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":5,"width":164,"height":147,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":5,"--left":0,"--width":164,"--height":147,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"147mm","width":"calc(164mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:26px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Balkentafel-Teil_07f34654-7ea8-4521-88e1-df8cbe1b5333.png","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1558075862165,"attrs":{"viewBox":"0 0 619.8425196850394 555.5905511811025","width":619.8425196850394,"height":555.5905511811025,"key":1558075862165,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-b0081243-11d0-4510-81ea-bfabe9ecf053"},"children":[{"tag":"path","attrs":{"d":"M3.9273929446935654 3.18483330309391 L618.9308933311795 2.8842728286981583 L622.576233773837 554.7033315285689 L-2.9798474460840225 555.3744812592513","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"}]}}Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
Wenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen. Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
Einige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
Für Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
Wenden Sie sich für Rückfragen gern an: support@tutory.de