","zoomIn":"","zoomOut":"","info":"","sweep":"","fontStyle":"","hasSeen":"","downloadSolutionSheet":"","showSolution":"","checkmarkGreen":"","multipleChoice":""},"images":{"https://editor.mnweg.org/uploads/images/Bildschirmfoto-202021-09-10-20um-2022-42-58_560ff38e-3b73-4a3f-9436-2dc8b1305bcf.png?width=1281":"","https://editor.mnweg.org/uploads/images/Bildschirmfoto-202021-09-10-20um-2022-46-18_489a2038-5502-49fc-b26a-a3c2696589fe.png?width=1929":"","https://editor.mnweg.org/uploads/images/Bildschirmfoto-202021-09-10-20um-2022-44-45_120d3c7f-201a-4dd2-9612-5ba0768c8265.png?width=1281":"","https://editor.mnweg.org/uploads/images/Bildschirmfoto-202021-09-10-20um-2022-47-01_126afbda-528e-4fa2-ac93-1e37afca9d82.png?width=873":""},"translations":{"editor.tile.headline":"Überschrift","math.subtractionSign":"−","math.additionSign":"+","editor.tile.definition":"Begriffsdefinition","editor.tile.task":"Aufgabenstellung","editor.tile.image":"Bild","editor.tile.youtube":"YouTube-Video","editor.tile.hint":"Hinweis","editor.tile.table":"Tabelle (alt)","digital.worksheet.prefix":"dAb","digital.worksheet.url":"/dAb/{slug}","digital.toolbar.zoomIn":"Vergrößern {shortcut}","digital.toolbar.zoomOut":"Verkleinern {shortcut}","digital.toolbar.markRightWrong":"Richtige und Falsche anzeigen","digital.toolbar.showSolution":"Lösungen anzeigen","digital.toolbar.scrollNextTask":"Scrollen zur nächsten Aufgabe","digital.toolbar.shareSolution":"Lösung teilen","digital.toolbar.copySolutionUrl":"Lösungs-URL kopieren","digital.toolbar.downloadSolution":"Lösung herunterladen","digital.solution.headline":"Bearbeitetes Dokument","digital.solution.studentId":"Stimmt diese Nummer nicht mit der im Dateinamen überein? Dann handelt es sich womöglich um eine Kopie eines bereits bearbeiteten Arbeitsblattes.
Mehr erfahren.","digital.toolbar.clearInput":"Eingaben löschen","digital.toolbar.clearInputAndSelectTile":"Eingaben löschen (wählen Sie einen Baustein)","digital.toolbar.infoTile":"Baustein-Information","digital.toolbar.infoTileAndSelectTile":"Baustein-Information (wählen Sie einen Baustein)","tile.digital.explanation.fallback.passive":"Du kannst hier nichts weiter tun.","tile.digital.explanation.fallback":"Tippe oder klicke – sofern vorhanden – auf die Lücken, um diese auszufüllen.","tile.digital.overflowMessage":"Text zu lang, bitte kürzen!","tile.allocateWords.digital.explanation":"Tippe oder klicke auf eine Lücke, wähle aus dem Dropdown aus bzw. gib die Wörter ein.","tile.paper.digital.explanation":"Gib einen Text ein.","tile.paper.digital.nonLined.explanation":"Hier kannst du leider nicht schreiben. Eingaben sind nur auf einfacher Lineatur möglich.","tile.multipleChoice.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.multipleChoiceTable.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.pairOfTask.lines.digital.explanation":"Um ein Paar zu bilden, tippe oder klicke auf einen Partner und tippe dann auf den dazugehörigen Partner auf der anderen Seite. Um ein Paar zu löschen, tippe auf einen der verbundenen Partner.","tile.pairOfTask.number.digital.explanation":"Um ein Paar zu bilden, klicke auf den rechten Partner und gib die Nummer des dazugehörigen Partners auf der linken Seite ein.","tile.sortTask.digital.explanation":"Tippe oder klicke auf die jeweilige Lücke links und gib eine Zahl ein, die die Reihenfolge kenzeichnet.","tile.wordSearchPuzzle.digital.explanation":"Tippe einzeln auf die jeweiligen Buchstaben, die zu einem Lösungswort gehören. Wenn du mit einer Maus bzw. am Computer bist, kannst du mehrere Buchstaben gleichzeitig markieren. Erneutes tippen oder klicken löscht die Markierung wieder.","tile.crosswordPuzzle.digital.explanation":"Tippe oder klicke auf das auszufüllende Feld und gib den Lösungsbuchstaben ein.","tile.mathplot.digital.explanation":"Hier kannst du aktuell leider noch nichts ausfüllen, eingeben oder einzeichnen.","tile.signature.digital.explanation":"Hier kannst du aktuell noch nichts ausfüllen oder eingeben.","tile.qrcode.digital.explanation":"Tippe oder klicke den Code an, um den Link dahinter aufzurufen bzw. den Inhalt anzuzeigen.","digital.solution.filename":"Lösung","digital.solution.text":"Lösung","digital.noScriptHint":"
Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
\nWenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen.\n Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
\nEinige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
\nFür Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
\n
Wenden Sie sich für Rückfragen gern an: support@tutory.de
","digital.noScriptWithLink":"Auf diesem Weg kann das digitale Arbeitsblatt leider nicht anzeigt werden.
\nDas kann daran liegen, dass Sie es von einem iPad aus öffnen oder es in der Vorschau von anderen Programmen sehen, die unsere digitalen Arbeitsblätter nicht öffnen wollen.
\nWas kann man tun?
\n\n 1) Ermöglichen Sie das Bereitstellen dieses Dokuments per Link. Mehr dazu finden Sie im Dialog zur Bereitstellung des digitalen AB auf MNW.
\n 2) Laden Sie das Dokument in einem Lernmanagementsystem hoch, von welchem aus Lernende es im Browser öffnen können. Ziel des Versuchs muss es also sein, dass Dokument von einem Browser öffnen zu lassen. Wenn das gelingt, so kann das Dokument auch zuverlässig angezeigt werden.\n
Melden Sie sich bei Rückfragen gern beim Materialnetzwerk eG-Support oder lesen Sie Details zur Sache auf https://mnweg.org/faqs
\nViele Grüße
\nIhr MNW-Team
"},"config":{"worksheetFormats":{"a4Portrait":{"code":"a4Portrait","name":"A4 (Hochformat)","grids":[{"id":"main","gutter":1,"columnCount":12,"columnWidth":13.25}],"gridGutter":0,"height":297,"width":210,"paddingTop":10,"paddingLeft":20,"paddingRight":20,"paddingBottom":10,"bindingPosition":"left","headerHeight":26,"headerMarginBottom":4,"footerHeight":12,"footerMarginTop":4,"logoMarginTop":6,"logoMarginLeft":6,"logoMaxWidth":20,"logoMaxHeight":20}},"defaultWorksheetFormat":"a4Portrait","fontDimensions":{"small":{"sizePx":12,"lineHeightPx":16,"label":"9","breakpointSize":"small"},"medium":{"sizePx":14,"lineHeightPx":18,"label":"10½","breakpointSize":"medium","isDefault":true},"large":{"sizePx":16,"lineHeightPx":22,"label":"12","breakpointSize":"large"},"extra-large":{"sizePx":21,"oldFloatSizePx":21.333333333333332,"lineHeightPx":29,"label":"15¾","breakpointSize":"extra-large"}}},"worksheet":{"name":"Rechnen mit Dezimalzahlen","format":"a4Portrait","fontSize":"medium","pages":[{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB, Info"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Rechnen mit Dezimalzahlen"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Rechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"9"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"08.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/rechnen-mit-dezimalzahlen-2"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"1"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"3"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"feca35ba-62f9-4450-9c49-ad51ab7b7ce2","z":0,"templateName":"headline","title":"Überschrift - Rechnen mit Dezimalzahlen","x":0,"y":2.5,"width":170,"height":10,"busData":{"stylesOutput":{"--top":2.5,"--left":0,"--width":170,"--height":10,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"h1","attrs":{"className":"isUnderlined"},"children":[{"tag":"span","attrs":{"className":"enumeration"},"children":[]},{"tag":"#","children":" "},{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Die Grundrechenarten mit Dezimalzahlen"}]}]},false]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942293580,"attrs":{"viewBox":"0 0 642.5196850393702 37.795275590551185","width":642.5196850393702,"height":37.795275590551185,"key":1689942293580,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-feca35ba-62f9-4450-9c49-ad51ab7b7ce2"},"children":[{"tag":"path","attrs":{"d":"M-0.4215431623160839 3.690011840313673 L643.0812288206805 2.2798676304519176 L646.010074583887 34.38897896109252 L-1.344600599259138 36.57974875269561","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-headline font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"ffaf77a2-0ce0-491c-af1b-90d4bf02b9ea","z":1,"templateName":"definition","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Begriffsdefinition - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":91.29101,"y":15,"width":78.70899,"height":35.5,"busData":{"stylesOutput":{"--top":15,"--left":91.29101,"--width":78.70899,"--height":35.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon bookmark"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Merkwissen Dezimalzahlen"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Bei der Addition und Subtraktion von "}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Dezimalzahlen müssen die Zahlen "}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"aufs Komma genau untereinander "}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"geschrieben werden, d.h. "}]},{"tag":"p","attrs":{},"children":[{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Komma unter Komma"}]},{"tag":"#","children":"."}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694159853772,"attrs":{"viewBox":"0 0 297.48279685039375 134.1732283464567","width":297.48279685039375,"height":134.1732283464567,"key":1694159853772,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-definition isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"1a3d29db-00fa-427c-8adf-58989e711885","z":4,"templateName":"task","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Aufgabenstellung - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":0,"y":17.5,"width":79.79688,"height":32.5,"busData":{"canHaveParentTask":false,"hasSolutionTile":null,"stylesOutput":{"--top":17.5,"--left":0,"--width":79.79688,"--height":32.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header "},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Das Rechnen mit Dezimalzahlen funktioniert im Prinzip genauso wie das Rechnen mit "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"ganzen Zahlen. "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"Wenn es dir nicht mehr ganz klar ist, am "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"besten die beiden Videos anschauen. "}]}]}]}],false]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942293569,"attrs":{"viewBox":"0 0 301.5945070866142 122.83464566929135","width":301.5945070866142,"height":122.83464566929135,"key":1689942293569,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-1a3d29db-00fa-427c-8adf-58989e711885"},"children":[{"tag":"path","attrs":{"d":"M-1.6269112676382065 3.3661998361349106 L303.426797154883 -1.526114597916603 L298.51675105426654 124.47320821447167 L-0.9473816007375717 119.77739646596703","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"3023d89c-7e64-44c0-bc9f-644b845aa045","z":5,"templateName":"task","license":"cc-by","licenseAuthor":"Andreas Schöler & MNWeG","licenseVersion":"4.0","title":"Aufgabenstellung - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":0,"y":52.5,"width":106.82716,"height":62.5,"busData":{"canHaveParentTask":false,"enumeration":1,"hasSolutionTile":null,"stylesOutput":{"--top":52.5,"--left":0,"--width":106.82716,"--height":62.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"1"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Löse folgende Aufgaben "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"schriftlich"}]},{"tag":"#","children":". "}]}]}]}],{"tag":"div","attrs":{"className":"tile-main"},"children":[{"tag":"ul","attrs":{"className":"lower-alpha"},"children":[{"tag":"li","key":"28858e1e-07db-49f4-8197-b00898571f67","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"234,07 + 56,8 + 1.569,10 ="},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"a80b25ca-fe5a-4f5d-8b2d-2d16e8877711","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"9,19 + 245,0 + 56,8 = "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"e2f56ec1-eee3-4d10-8be0-b6ec3064466d","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"345,93 - 37,6 ="},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"682820fa-a3c6-4fea-9003-36abdba508a4","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"6.023,082 - 26,24 - 123,7 ="},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Tipp"}]},{"tag":"#","children":": Du kannst auch die beiden Zahlen, die du "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"abziehen sollst (also 26,24 und 123,7) addieren und dann "},{"tag":"quote","attrs":{},"children":[{"tag":"#","children":"auf einmal"}]},{"tag":"#","children":" von der obersten Zahl abziehen. "}]}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694159831756,"attrs":{"viewBox":"0 0 403.75619527559064 236.22047244094492","width":403.75619527559064,"height":236.22047244094492,"key":1694159831756,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-3023d89c-7e64-44c0-bc9f-644b845aa045"},"children":[{"tag":"path","attrs":{"d":"M1.4892990104854107 1.9525351412594318 L406.57999900962494 3.8300455696880817 L403.8858896889844 232.69950136996985 L-0.7945670373737812 233.6750113711524","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"fb046a9f-213c-4685-88f5-937902f4fc30","z":9,"templateName":"image","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Bild - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":0,"y":55,"width":113,"height":70,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":55,"--left":0,"--width":113,"--height":70,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"70mm","width":"calc(113mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:7px;width:427px;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Bildschirmfoto-202021-09-10-20um-2022-42-58_560ff38e-3b73-4a3f-9436-2dc8b1305bcf.png?width=1281","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "},"oncreate":false,"onupdate":false},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1691504575474,"attrs":{"viewBox":"0 0 427.0866141732284 264.5669291338583","width":427.0866141732284,"height":264.5669291338583,"key":1691504575474,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-fb046a9f-213c-4685-88f5-937902f4fc30"},"children":[{"tag":"path","attrs":{"d":"M3.6873773336410522 1.3912721872329712 L425.18636409598076 1.028521180152893 L426.8325013335296 262.2860440334936 L3.3953202962875366 264.07295122953855","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-onSolution borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"5ea9d6f0-cc83-409c-b37d-9e78f680c122","z":2,"templateName":"youtube","title":"YouTube-Video - Rechnen mit Dezimalzahlen","x":114,"y":60.375,"width":55.5,"height":25,"busData":{"stylesOutput":{"--top":60.375,"--left":114,"--width":55.5,"--height":25,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"className":"card withTitle"},"children":[{"tag":"div","attrs":{"className":"label"},"children":[{"tag":"#","children":"Dezimalzahlen addieren"}]},{"tag":"div","attrs":{"className":"description"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"qrCode"},"children":[{"tag":"a","attrs":{"active":false,"disabled":false,"href":"https://www.youtube-nocookie.com/embed/FZJ6kX1JqEk","rel":"noopener noreferrer","target":"youtube"},"children":[{"tag":"<","children":""}]},{"tag":"a","attrs":{"href":"https://www.youtube-nocookie.com/embed/FZJ6kX1JqEk","target":"youtube","className":"icon-button icon play"},"children":[{"tag":"<","children":""}]},{"tag":"#","children":"YouTube-Video"}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694159853791,"attrs":{"viewBox":"0 0 209.76377952755908 94.48818897637796","width":209.76377952755908,"height":94.48818897637796,"key":1694159853791,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-youtube font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-dropShadow borderWidth-S backgroundColor-blue fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"35c67523-f200-4e0f-9b6f-678b7efe0722","z":3,"templateName":"youtube","title":"YouTube-Video - Rechnen mit Dezimalzahlen","x":114,"y":95.25,"width":55.5,"height":25,"busData":{"stylesOutput":{"--top":95.25,"--left":114,"--width":55.5,"--height":25,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"className":"card withTitle"},"children":[{"tag":"div","attrs":{"className":"label"},"children":[{"tag":"#","children":"Dezimalzahlen subtrahieren"}]},{"tag":"div","attrs":{"className":"description"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"qrCode"},"children":[{"tag":"a","attrs":{"active":false,"disabled":false,"href":"https://www.youtube-nocookie.com/embed/hB-iJNC17M0","rel":"noopener noreferrer","target":"youtube"},"children":[{"tag":"<","children":""}]},{"tag":"a","attrs":{"href":"https://www.youtube-nocookie.com/embed/hB-iJNC17M0","target":"youtube","className":"icon-button icon play"},"children":[{"tag":"<","children":""}]},{"tag":"#","children":"YouTube-Video"}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694159853769,"attrs":{"viewBox":"0 0 209.76377952755908 94.48818897637796","width":209.76377952755908,"height":94.48818897637796,"key":1694159853769,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-youtube font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-dropShadow borderWidth-S backgroundColor-blue fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"d02b6095-ff4a-434e-a2b8-abb6e91754c5","z":6,"templateName":"task","title":"Aufgabenstellung - Rechnen mit Dezimalzahlen","x":0,"y":120,"width":84.5,"height":35,"busData":{"canHaveParentTask":true,"enumeration":2,"hasSolutionTile":null,"stylesOutput":{"--top":120,"--left":0,"--width":84.5,"--height":35,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"2"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Löse folgende Aufgaben "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"schriftlich"}]},{"tag":"#","children":". "}]}]}]}],{"tag":"div","attrs":{"className":"tile-main"},"children":[{"tag":"ul","attrs":{"className":"lower-alpha"},"children":[{"tag":"li","key":"28858e1e-07db-49f4-8197-b00898571f67","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"23,05 · 8,7 = "},{"tag":"<","children":"⇒"},{"tag":"#","children":" Starthilfe: 2.305 · 87 = "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"a80b25ca-fe5a-4f5d-8b2d-2d16e8877711","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"9,7 · 2,15 = "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"e2f56ec1-eee3-4d10-8be0-b6ec3064466d","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"12,05 · 0,45 ="}]}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694159834328,"attrs":{"viewBox":"0 0 319.3700787401575 132.28346456692915","width":319.3700787401575,"height":132.28346456692915,"key":1694159834328,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-d02b6095-ff4a-434e-a2b8-abb6e91754c5"},"children":[{"tag":"path","attrs":{"d":"M-2.0123703107237816 -3.127268947660923 L322.9707061997432 -2.1118983402848244 L319.9252948514003 133.12037036673527 L-1.720137558877468 131.52335999266606","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"6de11046-3518-487d-83b7-ff3b36365924","z":10,"templateName":"image","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Bild - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":0,"y":125,"width":113,"height":70,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":125,"--left":0,"--width":113,"--height":70,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"70mm","width":"calc(113mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:9px;width:427px;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Bildschirmfoto-202021-09-10-20um-2022-44-45_120d3c7f-201a-4dd2-9612-5ba0768c8265.png?width=1281","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "},"oncreate":false,"onupdate":false},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1691504575504,"attrs":{"viewBox":"0 0 427.0866141732284 264.5669291338583","width":427.0866141732284,"height":264.5669291338583,"key":1691504575504,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-6de11046-3518-487d-83b7-ff3b36365924"},"children":[{"tag":"path","attrs":{"d":"M-1.849546279758215 0.5515297912061214 L425.98116548391664 -1.1136817671358585 L428.554032758201 266.32944434719883 L-1.6281368397176266 264.77353912430607","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-onSolution borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"6984e9c2-7692-400b-9f7a-e54e37c7cb9a","z":7,"templateName":"youtube","title":"YouTube-Video - Rechnen mit Dezimalzahlen","x":114,"y":130.125,"width":56,"height":25,"busData":{"stylesOutput":{"--top":130.125,"--left":114,"--width":56,"--height":25,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"className":"card withTitle"},"children":[{"tag":"div","attrs":{"className":"label"},"children":[{"tag":"#","children":"Dezimalzahlen multiplizieren "}]},{"tag":"div","attrs":{"className":"description"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"qrCode"},"children":[{"tag":"a","attrs":{"active":false,"disabled":false,"href":"https://www.youtube-nocookie.com/embed/2QfdWJMQpUU","rel":"noopener noreferrer","target":"youtube"},"children":[{"tag":"<","children":""}]},{"tag":"a","attrs":{"href":"https://www.youtube-nocookie.com/embed/2QfdWJMQpUU","target":"youtube","className":"icon-button icon play"},"children":[{"tag":"<","children":""}]},{"tag":"#","children":"YouTube-Video"}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694159853770,"attrs":{"viewBox":"0 0 211.65354330708664 94.48818897637796","width":211.65354330708664,"height":94.48818897637796,"key":1694159853770,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-youtube font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-dropShadow borderWidth-S backgroundColor-blue fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"3473d080-2f54-433e-9f0b-4650eca8848b","z":8,"templateName":"definition","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Begriffsdefinition - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":42.75,"y":165,"width":126.75,"height":60,"busData":{"stylesOutput":{"--top":165,"--left":42.75,"--width":126.75,"--height":60,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon bookmark"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Merkwissen Dezimalzahlen"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Bei der Multiplikation von Dezimalzahlen werden die Zahlen "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"ohne"}]},{"tag":"#","children":" Kommas multipliziert. Im Ergebnis muss dann das Komma um die Anzahl der Kommastellen der "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"beiden"}]},{"tag":"#","children":" Faktoren nach links "}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"verschoben werden. "}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Z.B. 3,45 · 7,4 "}]},{"tag":"p","attrs":{},"children":[{"tag":"<","children":"→"},{"tag":"#","children":" Rechnung: 345 · 74 = 25.530 "}]},{"tag":"p","attrs":{},"children":[{"tag":"<","children":"→"},{"tag":"#","children":" 3 Stellen nach dem Komma "}]},{"tag":"p","attrs":{},"children":[{"tag":"<","children":"→"},{"tag":"#","children":" Ergebnis 3,45 · 7,4 = 25,530"}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":" "},{"tag":"#","children":"(Überschlag: 3 · 7 = 21)"}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694159853760,"attrs":{"viewBox":"0 0 479.05511811023626 226.7716535433071","width":479.05511811023626,"height":226.7716535433071,"key":1694159853760,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-definition isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-phase-9 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-materialForm-info meta-subjectArea-rechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--custom-goal:Ich kann die Grundrechenarten mit Dezimalzahlen.;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/rechnen.png\");"},{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB, Info"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Rechnen mit Dezimalzahlen"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Rechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"9"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"08.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/rechnen-mit-dezimalzahlen-2"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"2"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"3"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"1fa76e94-2844-4403-9556-66dae53526a9","z":3,"templateName":"image","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Bild - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":0,"y":0,"width":170,"height":50,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":0,"--left":0,"--width":170,"--height":50,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"50mm","width":"calc(170mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:-3px;width:643px;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Bildschirmfoto-202021-09-10-20um-2022-46-18_489a2038-5502-49fc-b26a-a3c2696589fe.png?width=1929","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "},"oncreate":false,"onupdate":false},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694160025807,"attrs":{"viewBox":"0 0 642.5196850393702 188.9763779527559","width":642.5196850393702,"height":188.9763779527559,"key":1694160025807,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-1fa76e94-2844-4403-9556-66dae53526a9"},"children":[{"tag":"path","attrs":{"d":"M0.18063805624842644 -0.42038683220744133 L646.0269075539697 1.1380022354424 L639.0255920794596 189.61511010667823 L0.23980198428034782 188.45796114942573","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-onSolution borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"a5e77056-d1f3-4b6a-b149-fce6a47bc7bc","z":2,"templateName":"task","title":"Aufgabenstellung - Rechnen mit Dezimalzahlen","x":0,"y":2.5,"width":85,"height":37.5,"busData":{"canHaveParentTask":true,"enumeration":3,"hasSolutionTile":null,"stylesOutput":{"--top":2.5,"--left":0,"--width":85,"--height":37.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"3"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Löse folgende Aufgaben "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"schriftlich"}]},{"tag":"#","children":". "}]}]}]}],{"tag":"div","attrs":{"className":"tile-main"},"children":[{"tag":"ul","attrs":{"className":"lower-alpha"},"children":[{"tag":"li","key":"28858e1e-07db-49f4-8197-b00898571f67","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"223,05 : 5 = "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"a80b25ca-fe5a-4f5d-8b2d-2d16e8877711","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"123,2 : 1,1 = "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"e2f56ec1-eee3-4d10-8be0-b6ec3064466d","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"1.205 : 0,5 ="}]}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942827652,"attrs":{"viewBox":"0 0 321.2598425196851 141.73228346456693","width":321.2598425196851,"height":141.73228346456693,"key":1689942827652,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-a5e77056-d1f3-4b6a-b149-fce6a47bc7bc"},"children":[{"tag":"path","attrs":{"d":"M-2.2392548583447933 -3.0712671615183353 L324.1226888681198 0.45608529075980186 L320.9529127860809 141.92711265657948 L-3.4000723622739315 144.83928413961934","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"04cd205b-93c9-4617-b495-aeba9eee4e18","z":1,"templateName":"youtube","title":"YouTube-Video - Rechnen mit Dezimalzahlen","x":85.5,"y":2.5,"width":84.5,"height":24.5,"busData":{"stylesOutput":{"--top":2.5,"--left":85.5,"--width":84.5,"--height":24.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"className":"card withTitle"},"children":[{"tag":"div","attrs":{"className":"label"},"children":[{"tag":"#","children":"Dezimalzahlen dividieren | Video bis Minute 1:43 anschauen reicht"}]},{"tag":"div","attrs":{"className":"description"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"qrCode"},"children":[{"tag":"a","attrs":{"active":false,"disabled":false,"href":"https://www.youtube-nocookie.com/embed/4IosoF-ldMs","rel":"noopener noreferrer","target":"youtube"},"children":[{"tag":"<","children":""}]},{"tag":"a","attrs":{"href":"https://www.youtube-nocookie.com/embed/4IosoF-ldMs","target":"youtube","className":"icon-button icon play"},"children":[{"tag":"<","children":""}]},{"tag":"#","children":"YouTube-Video"}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942844295,"attrs":{"viewBox":"0 0 319.3700787401575 92.5984251968504","width":319.3700787401575,"height":92.5984251968504,"key":1689942844295,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-youtube font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-dropShadow borderWidth-S backgroundColor-blue fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"1db244e9-bfe3-4f4d-b15c-b52dbe7ac024","z":0,"templateName":"youtube","title":"YouTube-Video - Rechnen mit Dezimalzahlen","x":85.5,"y":32.5,"width":84.5,"height":24.5,"busData":{"stylesOutput":{"--top":32.5,"--left":85.5,"--width":84.5,"--height":24.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":{"tag":"div","attrs":{"className":"card withTitle"},"children":[{"tag":"div","attrs":{"className":"label"},"children":[{"tag":"#","children":"2 Dezimalzahlen dividieren"}]},{"tag":"div","attrs":{"className":"description"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"qrCode"},"children":[{"tag":"a","attrs":{"active":false,"disabled":false,"href":"https://www.youtube-nocookie.com/embed/CjcwkeOPuOQ","rel":"noopener noreferrer","target":"youtube"},"children":[{"tag":"<","children":""}]},{"tag":"a","attrs":{"href":"https://www.youtube-nocookie.com/embed/CjcwkeOPuOQ","target":"youtube","className":"icon-button icon play"},"children":[{"tag":"<","children":""}]},{"tag":"#","children":"YouTube-Video"}]}]}},"gridId":"main","backgroundOut":[{"tag":"svg","key":1691504653214,"attrs":{"viewBox":"0 0 319.3700787401575 92.5984251968504","width":319.3700787401575,"height":92.5984251968504,"key":1691504653214,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-youtube font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-dropShadow borderWidth-S backgroundColor-blue fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"b975c9e7-7fa1-4a0a-864b-d59a79342745","z":4,"templateName":"image","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Bild - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":5.5,"y":49,"width":84.5,"height":60,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":49,"--left":5.5,"--width":84.5,"--height":60,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"54.97291666666667mm","width":"calc(84.5mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:14px;top:2px;width:291px;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Bildschirmfoto-202021-09-10-20um-2022-47-01_126afbda-528e-4fa2-ac93-1e37afca9d82.png?width=873","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "},"oncreate":false,"onupdate":false},"children":[]}]}]},{"tag":"div","attrs":{"className":"label position-below"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694160017645,"attrs":{"viewBox":"0 0 319.3700787401575 207.7716535433071","width":319.3700787401575,"height":207.7716535433071,"key":1694160017645,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-b975c9e7-7fa1-4a0a-864b-d59a79342745"},"children":[{"tag":"path","attrs":{"d":"M2.813633531332016 0.9041909277439117 L317.57035186652126 -2.615917295217514 L318.4263212955374 211.6560442848938 L-0.5745128691196442 211.46094826896362","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-onSolution borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"62536639-c624-4f10-9155-16227c66a9bb","z":5,"templateName":"definition","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Begriffsdefinition - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":57,"y":77.5,"width":113,"height":57.5,"busData":{"stylesOutput":{"--top":77.5,"--left":57,"--width":113,"--height":57.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon bookmark"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Merkwissen Dezimalzahlen"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Bei der Division von Dezimalzahlen werden, wenn der Divisor eine Kommastelle hat, "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"auf beiden Seiten"}]},{"tag":"#","children":" die Kommas um die gleiche Anzahl von Stellen "}]},{"tag":"p","attrs":{},"children":[{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"nach rechts "}]},{"tag":"#","children":"verschoben, bis der "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"Divisor"}]},{"tag":"#","children":" (die Zahl durch die geteilt wird) eine natürliche Zahl ist. "}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Z.B. 3,72 : 1,2 (Kommas auf "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"beiden Seiten"}]},{"tag":"#","children":" um "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"eine"}]},{"tag":"#","children":" Stelle nach rechs verschieben)"}]},{"tag":"p","attrs":{},"children":[{"tag":"<","children":"→"},{"tag":"#","children":" Rechnung: 37,2 : 12 = 3,1"}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Das Komma im Ergebnis wird "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"nicht"}]},{"tag":"#","children":" mehr verändert!"}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1694159981151,"attrs":{"viewBox":"0 0 427.0866141732284 217.3228346456693","width":427.0866141732284,"height":217.3228346456693,"key":1694159981151,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-definition isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-phase-9 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-materialForm-info meta-subjectArea-rechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--custom-goal:Ich kann die Grundrechenarten mit Dezimalzahlen.;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/rechnen.png\");"},{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB, Info"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Rechnen mit Dezimalzahlen"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Rechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"M"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"9"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"MNWeG"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"08.09.2023"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw/dokument/rechnen-mit-dezimalzahlen-2"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"3"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"3"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"e2876f0a-124a-4aff-9b0b-dbef5d44ecf5","z":11,"templateName":"headline","title":"Überschrift - Rechnen mit Dezimalzahlen","x":0,"y":0,"width":170,"height":17.5,"busData":{"stylesOutput":{"--top":0,"--left":0,"--width":170,"--height":17.5,"--border-radius":0,"--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"h1","attrs":{"className":"isUnderlined"},"children":[{"tag":"span","attrs":{"className":"enumeration"},"children":[]},{"tag":"#","children":" "},{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Umrechnen von Brüchen, Dezimalzahlen, Prozente"}]}]},false]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942772953,"attrs":{"viewBox":"0 0 642.5196850393702 66.14173228346458","width":642.5196850393702,"height":66.14173228346458,"key":1689942772953,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-e2876f0a-124a-4aff-9b0b-dbef5d44ecf5"},"children":[{"tag":"path","attrs":{"d":"M1.2027203030884266 0.5117503814399242 L641.2223475259532 0.2208898477256298 L641.0935246032466 63.951320160708335 L2.6164224334061146 67.46901523002138","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":false,"lineHeightPx":18,"fontSizePx":14,"className":"tile-headline font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}},{"id":"9eba6f77-d15b-42cb-8d31-17a6b15d88d3","z":12,"templateName":"task","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Aufgabenstellung - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":0,"y":15,"width":85,"height":50,"busData":{"canHaveParentTask":true,"hasSolutionTile":null,"stylesOutput":{"--top":15,"--left":0,"--width":85,"--height":50,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header "},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Es gibt verschiedene Schreibweisen für Brüche:"},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"- Den echten Bruch "},{"tag":"<","children":"52"},{"tag":"#","children":", "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"- den Hundertstelbruch "},{"tag":"<","children":"10040"},{"tag":"#","children":", "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"- als Dezimalzahl 0,4 und "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"- als Prozent 40 "},{"tag":"#","children":"%"},{"tag":"#","children":"."},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"Denke daran, der Bruch "},{"tag":"<","children":"52"},{"tag":"#","children":" bedeutet "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"2 von 5 "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"gleich großen"}]},{"tag":"#","children":" Teilen. "}]}]}]}],false]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942907170,"attrs":{"viewBox":"0 0 321.2598425196851 188.9763779527559","width":321.2598425196851,"height":188.9763779527559,"key":1689942907170,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-9eba6f77-d15b-42cb-8d31-17a6b15d88d3"},"children":[{"tag":"path","attrs":{"d":"M3.146842986345291 -2.7422061264514923 L320.2279125796998 3.7098669707775116 L320.2483889209474 189.0997132844343 L1.519795447587967 191.02242847150706","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"41e7d2c2-3655-4513-85ee-3656b2c0a4ac","z":13,"templateName":"definition","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Begriffsdefinition - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":86,"y":15,"width":84,"height":42.5,"busData":{"stylesOutput":{"--top":15,"--left":86,"--width":84,"--height":42.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon bookmark"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Merkwissen Bruchschreibweisen"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Der Bruch "},{"tag":"<","children":"52"},{"tag":"#","children":" bedeutet 2 von 5 "},{"tag":"strong","attrs":{},"children":[{"tag":"#","children":"gleich "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"großen"}]},{"tag":"#","children":" Teilen. Schreibweise als ..."}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"... Hundertstelbruch "},{"tag":"<","children":"10040"}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"... Dezimalzahl 0,4"}]},{"tag":"p","attrs":{},"children":[{"tag":"#","children":"... Prozent 40 "},{"tag":"#","children":"%"}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942843513,"attrs":{"viewBox":"0 0 317.4803149606299 160.62992125984255","width":317.4803149606299,"height":160.62992125984255,"key":1689942843513,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-definition isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"b13edb9c-d8e8-4241-bf94-4fbc684701f0","z":15,"templateName":"task","title":"Aufgabenstellung - Rechnen mit Dezimalzahlen","x":0,"y":80,"width":170,"height":12.5,"busData":{"canHaveParentTask":true,"enumeration":4,"hasSolutionTile":null,"stylesOutput":{"--top":80,"--left":0,"--width":170,"--height":12.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"4"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Ergänze die Tabelle um die fehlenden Werte."}]}]}]}],false]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942785776,"attrs":{"viewBox":"0 0 642.5196850393702 47.24409448818898","width":642.5196850393702,"height":47.24409448818898,"key":1689942785776,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-b13edb9c-d8e8-4241-bf94-4fbc684701f0"},"children":[{"tag":"path","attrs":{"d":"M-0.17594127729535103 3.138603676110506 L642.0577345696081 -2.811125885695219 L642.6620566454519 47.66389165909624 L0.029236864298582077 50.53677104504442","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"7d363e9d-51b0-40ac-ba50-f70607504924","z":16,"templateName":"hint","title":"Hinweis - Rechnen mit Dezimalzahlen","x":0,"y":90,"width":141.5,"height":18,"busData":{"stylesOutput":{"--top":90,"--left":0,"--width":141.5,"--height":18,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon lightBulb"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Brüche erweitern"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Versuche immer, den Bruch auf einen Hundertstelbruch zu erweitern."}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942918459,"attrs":{"viewBox":"0 0 534.8031496062993 68.03149606299213","width":534.8031496062993,"height":68.03149606299213,"key":1689942918459,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-hint isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle symbol-lightBulb","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"c21491c2-e0bd-4578-bc71-a7f77c891fca","z":10,"templateName":"table","license":"cc-by","licenseAuthor":"Andreas Schöler","licenseVersion":"4.0","title":"Tabelle (alt) - Rechnen mit Dezimalzahlen","licenseUrl":"http://creativecommons.org/licenses/by/4.0/legalcode","x":0,"y":122.5,"width":170,"height":82.5,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":122.5,"--left":0,"--width":170,"--height":82.5,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"table","attrs":{"className":"fixed striped align-center"},"children":[{"tag":"colgroup","attrs":{},"children":[{"tag":"col","attrs":{"style":{"width":"8%"}},"children":[]},{"tag":"col","attrs":{"style":{"width":"23%"}},"children":[]},{"tag":"col","attrs":{"style":{"width":"22%"}},"children":[]},{"tag":"col","attrs":{"style":{"width":"22%"}},"children":[]},{"tag":"col","attrs":{"style":{"width":"25%"}},"children":[]}]},{"tag":"tbody","attrs":{},"children":[{"tag":"tr","attrs":{},"children":[{"tag":"th","attrs":{"className":"titleColumn titleRow"},"children":[]},{"tag":"th","attrs":{"className":"titleRow"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Bruch"}]}]}]},{"tag":"th","attrs":{"className":"titleRow"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Hundertstelbruch"}]}]}]},{"tag":"th","attrs":{"className":"titleRow"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Dezimalzahl"}]}]}]},{"tag":"th","attrs":{"className":"titleRow"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Prozent"}]}]}]}]},{"tag":"tr","attrs":{},"children":[{"tag":"th","attrs":{"className":"titleColumn"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Bsp."}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"<","children":"43"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"<","children":"10075"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"0,75"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"75 "},{"tag":"#","children":"%"}]}]}]}]},{"tag":"tr","attrs":{},"children":[{"tag":"th","attrs":{"className":"titleColumn"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"a)"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":12,"className":"form-print-input form-print-input-12 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"<","children":"10035"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":4,"className":"form-print-input form-print-input-4 hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":4,"className":"form-print-input form-print-input-4 hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]}]},{"tag":"tr","attrs":{},"children":[{"tag":"th","attrs":{"className":"titleColumn"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"b)"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":11,"className":"form-print-input form-print-input-11 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":14,"className":"form-print-input form-print-input-14 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"0,25"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":4,"className":"form-print-input form-print-input-4 hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]}]},{"tag":"tr","attrs":{},"children":[{"tag":"th","attrs":{"className":"titleColumn"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"c)"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":11,"className":"form-print-input form-print-input-11 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":14,"className":"form-print-input form-print-input-14 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":10,"className":"form-print-input form-print-input-10 hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]},{"tag":"#","children":" "}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"80 "},{"tag":"#","children":"%"}]}]}]}]},{"tag":"tr","attrs":{},"children":[{"tag":"th","attrs":{"className":"titleColumn"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"d)"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"<","children":"201"}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":13,"className":"form-print-input form-print-input-13 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":4,"className":"form-print-input form-print-input-4 hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]},{"tag":"td","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"span","attrs":{"data-cloze-length":3,"className":"form-print-input form-print-input-3 hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1689942791494,"attrs":{"viewBox":"0 0 642.5196850393702 311.8110236220473","width":642.5196850393702,"height":311.8110236220473,"key":1689942791494,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-table font-likeWorksheet fontSize-medium hyphenation-disabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-phase-9 meta-subject-math meta-level-secondarymodernschoolqualification meta-materialForm-ab meta-materialForm-info meta-subjectArea-rechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--custom-goal:Ich kann die Grundrechenarten mit Dezimalzahlen.;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/rechnen.png\");"}]}}Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
Wenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen. Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
Einige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
Für Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
Wenden Sie sich für Rückfragen gern an: support@tutory.de