","zoomIn":"","zoomOut":"","info":"","sweep":"","fontStyle":"","hasSeen":"","downloadSolutionSheet":"","showSolution":"","checkmarkGreen":"","multipleChoice":""},"images":{"https://editor.mnweg.org/uploads/images/Balkentafel-Viersechstel_ac77cd93-29c8-4cc7-8939-c5ecd47bbfc6.png?width=1929":"","https://editor.mnweg.org/uploads/images/Balkentafel-Dreineuntel_7de1471b-3234-48c2-9e3d-a33bba4ed1c4.png?width=1929":""},"translations":{"editor.tile.task":"Aufgabenstellung","math.subtractionSign":"−","math.additionSign":"+","editor.tile.hint":"Hinweis","editor.tile.image":"Bild","digital.worksheet.prefix":"dAb","digital.worksheet.url":"/dAb/{slug}","digital.toolbar.zoomIn":"Vergrößern {shortcut}","digital.toolbar.zoomOut":"Verkleinern {shortcut}","digital.toolbar.markRightWrong":"Richtige und Falsche anzeigen","digital.toolbar.showSolution":"Lösungen anzeigen","digital.toolbar.scrollNextTask":"Scrollen zur nächsten Aufgabe","digital.toolbar.shareSolution":"Lösung teilen","digital.toolbar.copySolutionUrl":"Lösungs-URL kopieren","digital.toolbar.downloadSolution":"Lösung herunterladen","digital.solution.headline":"Bearbeitetes Dokument","digital.solution.studentId":"Stimmt diese Nummer nicht mit der im Dateinamen überein? Dann handelt es sich womöglich um eine Kopie eines bereits bearbeiteten Arbeitsblattes.
Mehr erfahren.","digital.toolbar.clearInput":"Eingaben löschen","digital.toolbar.clearInputAndSelectTile":"Eingaben löschen (wählen Sie einen Baustein)","digital.toolbar.infoTile":"Baustein-Information","digital.toolbar.infoTileAndSelectTile":"Baustein-Information (wählen Sie einen Baustein)","tile.digital.explanation.fallback.passive":"Du kannst hier nichts weiter tun.","tile.digital.explanation.fallback":"Tippe oder klicke – sofern vorhanden – auf die Lücken, um diese auszufüllen.","tile.digital.overflowMessage":"Text zu lang, bitte kürzen!","tile.allocateWords.digital.explanation":"Tippe oder klicke auf eine Lücke, wähle aus dem Dropdown aus bzw. gib die Wörter ein.","tile.paper.digital.explanation":"Gib einen Text ein.","tile.paper.digital.nonLined.explanation":"Hier kannst du leider nicht schreiben. Eingaben sind nur auf einfacher Lineatur möglich.","tile.multipleChoice.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.multipleChoiceTable.digital.explanation":"Tippe oder klicke in die Kästchen oder Kreise, um eine Antwort zu wählen.","tile.pairOfTask.lines.digital.explanation":"Um ein Paar zu bilden, tippe oder klicke auf einen Partner und tippe dann auf den dazugehörigen Partner auf der anderen Seite. Um ein Paar zu löschen, tippe auf einen der verbundenen Partner.","tile.pairOfTask.number.digital.explanation":"Um ein Paar zu bilden, klicke auf den rechten Partner und gib die Nummer des dazugehörigen Partners auf der linken Seite ein.","tile.sortTask.digital.explanation":"Tippe oder klicke auf die jeweilige Lücke links und gib eine Zahl ein, die die Reihenfolge kenzeichnet.","tile.wordSearchPuzzle.digital.explanation":"Tippe einzeln auf die jeweiligen Buchstaben, die zu einem Lösungswort gehören. Wenn du mit einer Maus bzw. am Computer bist, kannst du mehrere Buchstaben gleichzeitig markieren. Erneutes tippen oder klicken löscht die Markierung wieder.","tile.crosswordPuzzle.digital.explanation":"Tippe oder klicke auf das auszufüllende Feld und gib den Lösungsbuchstaben ein.","tile.mathplot.digital.explanation":"Hier kannst du aktuell leider noch nichts ausfüllen, eingeben oder einzeichnen.","tile.signature.digital.explanation":"Hier kannst du aktuell noch nichts ausfüllen oder eingeben.","tile.qrcode.digital.explanation":"Tippe oder klicke den Code an, um den Link dahinter aufzurufen bzw. den Inhalt anzuzeigen.","digital.solution.filename":"Lösung","digital.solution.text":"Lösung","digital.noScriptHint":"
Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
\nWenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen.\n Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
\nEinige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
\nFür Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
\n
Wenden Sie sich für Rückfragen gern an: support@tutory.de
","digital.noScriptWithLink":"Auf diesem Weg kann das digitale Arbeitsblatt leider nicht anzeigt werden.
\nDas kann daran liegen, dass Sie es von einem iPad aus öffnen oder es in der Vorschau von anderen Programmen sehen, die unsere digitalen Arbeitsblätter nicht öffnen wollen.
\nWas kann man tun?
\n\n 1) Ermöglichen Sie das Bereitstellen dieses Dokuments per Link. Mehr dazu finden Sie im Dialog zur Bereitstellung des digitalen AB auf MNW.
\n 2) Laden Sie das Dokument in einem Lernmanagementsystem hoch, von welchem aus Lernende es im Browser öffnen können. Ziel des Versuchs muss es also sein, dass Dokument von einem Browser öffnen zu lassen. Wenn das gelingt, so kann das Dokument auch zuverlässig angezeigt werden.\n
Melden Sie sich bei Rückfragen gern beim Materialnetzwerk eG-Support oder lesen Sie Details zur Sache auf https://mnweg.org/faqs
\nViele Grüße
\nIhr MNW-Team
"},"config":{"worksheetFormats":{"a4Portrait":{"code":"a4Portrait","name":"A4 (Hochformat)","grids":[{"id":"main","gutter":1,"columnCount":12,"columnWidth":13.25}],"gridGutter":0,"height":297,"width":210,"paddingTop":10,"paddingLeft":20,"paddingRight":20,"paddingBottom":10,"bindingPosition":"left","headerHeight":26,"headerMarginBottom":4,"footerHeight":12,"footerMarginTop":4,"logoMarginTop":6,"logoMarginLeft":6,"logoMaxWidth":20,"logoMaxHeight":20}},"defaultWorksheetFormat":"a4Portrait","fontDimensions":{"small":{"sizePx":12,"lineHeightPx":16,"label":"9","breakpointSize":"small"},"medium":{"sizePx":14,"lineHeightPx":18,"label":"10½","breakpointSize":"medium","isDefault":true},"large":{"sizePx":16,"lineHeightPx":22,"label":"12","breakpointSize":"large"},"extra-large":{"sizePx":21,"oldFloatSizePx":21.333333333333332,"lineHeightPx":29,"label":"15¾","breakpointSize":"extra-large"}}},"worksheet":{"name":"Balkentafel Kürzen II OER","format":"a4Portrait","fontSize":"medium","pages":[{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Balkentafel Kürzen II OER"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"R"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"anonym"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2024"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw-frankfurt/dokument/balkentafel-kuerzen-ii-oer"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"1"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"2"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"751ea9bd-d85f-414f-8ad0-e0cc7a945981","z":1,"templateName":"task","license":"cc-zero","licenseVersion":"4.0","title":"Aufgabenstellung - Balkentafel Kürzen II","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":0,"width":170,"height":115,"busData":{"canHaveParentTask":false,"enumeration":1,"hasSolutionTile":null,"stylesOutput":{"--top":0,"--left":0,"--width":170,"--height":115,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"1"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Löse die Aufgabe Schritt für Schritt:"},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]}]}],{"tag":"div","attrs":{"className":"tile-main"},"children":[{"tag":"ul","attrs":{"className":"lower-alpha"},"children":[{"tag":"li","key":"254af3e1-61d9-4a3e-b71a-3bc9babd6cd1","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Welcher Bruch ist in der Balkentafel eingezeichnet? "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"data-cloze-length":12,"className":"form-print-input form-print-input-12 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"f05833db-0d71-4727-9bc8-159b5df88c9e","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Mit welcher Zahl kannst du diesen Bruch vergröbern? "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"(siehe Tipp)"},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"data-cloze-length":9,"className":"form-print-input form-print-input-9 hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"47ce23f7-0fab-462d-a37a-94893621931f","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Male den vergröberten Bruch in der Balkentafel an."},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"0ebbfb43-7da1-4c02-a8d1-102f5378a05f","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Welchen Bruch erhältst du nach dem Vergröbern? "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"data-cloze-length":30,"className":"form-print-input form-print-input-30 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]}]}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1720700944432,"attrs":{"viewBox":"0 0 642.5196850393702 434.6456692913386","width":642.5196850393702,"height":434.6456692913386,"key":1720700944432,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-751ea9bd-d85f-414f-8ad0-e0cc7a945981"},"children":[{"tag":"path","attrs":{"d":"M-2.219987742602825 -1.0283231809735298 L644.3314162661125 -1.9219539240002632 L643.8818196226646 434.2441394949171 L1.755196936428547 431.7569876337263","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"b6892e7c-da3c-4f90-81fd-01d7b83c515d","z":2,"templateName":"hint","license":"cc-zero","licenseVersion":"4.0","title":"Hinweis - Balkentafel Kürzen II","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":114,"y":15,"width":56,"height":60,"busData":{"stylesOutput":{"--top":15,"--left":114,"--width":56,"--height":60,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[{"tag":"span","attrs":{"className":"icon lightBulb"},"children":[{"tag":"<","children":""}]},{"tag":"div","attrs":{"className":"eduMark title"},"children":[{"tag":"#","children":"Tipp"}]},{"tag":"div","attrs":{"className":"content align-left"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"p","attrs":{},"children":[{"tag":"#","children":"Um herauszufinden, welchen Bruch man mit welcher Zahl vergröbern"},{"tag":"#","children":"/"},{"tag":"#","children":"verfeinern kann, kannst du dein Lineal verwenden. Fahre dafür mit dem Lineal senkrecht über die Balkentafel. "}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1720700944432,"attrs":{"viewBox":"0 0 211.65354330708664 226.7716535433071","width":211.65354330708664,"height":226.7716535433071,"key":1720700944432,"className":"background"},"children":[{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-hint isTextLike hasBackground font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-box borderWidth-S backgroundColor-grey fillStyle-solid fillTone-dark difficultyLevel-0 enumerationStyle-circle symbol-lightBulb","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"7edf6ad6-2c51-4440-9260-aa76664bbbde","z":3,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Eigenes Bild - Balkentafel Kürzen II","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":108,"width":170,"height":123,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":108,"--left":0,"--width":170,"--height":123,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"123mm","width":"calc(170mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:0px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Balkentafel-Dreineuntel_7de1471b-3234-48c2-9e3d-a33bba4ed1c4.png","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1720700944432,"attrs":{"viewBox":"0 0 642.5196850393702 464.88188976377955","width":642.5196850393702,"height":464.88188976377955,"key":1720700944432,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-7edf6ad6-2c51-4440-9260-aa76664bbbde"},"children":[{"tag":"path","attrs":{"d":"M2.642746541649103 0.018311943858861923 L646.4555270504941 3.0297189615666866 L642.0836788249005 466.4259110982787 L3.4538376070559025 465.0770199592482","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondaryschoolleavingcertificate meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--custom-goal:Ich kann Brüche kürzen.;--custom-pathTitle:Balkentafel Kürzen;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"},{"header":{"left":[{"tag":"span","attrs":{"className":"meta-materialFormShort"},"children":[{"tag":"#","children":"AB"}]}],"center":[{"tag":"span","attrs":{"className":"meta-name"},"children":[{"tag":"#","children":"Balkentafel Kürzen II OER"}]}],"right":[{"tag":"span","attrs":{"className":"meta-subject"},"children":[{"tag":"#","children":"Mathematik"}]}," ",{"tag":"span","attrs":{"className":"meta-subjectArea"},"children":[{"tag":"#","children":"Bruchrechnen"}]}," ",{"tag":"span","attrs":{"className":"meta-levelShort"},"children":[{"tag":"#","children":"R"}]}," ",{"tag":"span","attrs":{"className":"meta-phase"},"children":[{"tag":"#","children":"5"}]}," "]},"footer":{"left":["Bereitgestellt von: ",{"tag":"span","attrs":{"className":"meta-author"},"children":[{"tag":"#","children":"anonym"}]},"\nStand: ",{"tag":"span","attrs":{"className":"meta-updatedAt"},"children":[{"tag":"#","children":"18.09.2024"}]},"\nLizenzhinweise: ",{"tag":"span","attrs":{"className":"meta-licenseUrl"},"children":[{"tag":"#","children":"https://editor.mnweg.org/mnw-frankfurt/dokument/balkentafel-kuerzen-ii-oer"}]}],"center":["Seite: ",{"tag":"span","attrs":{"className":"meta-page"},"children":[{"tag":"#","children":"2"}]},"/",{"tag":"span","attrs":{"className":"meta-pages"},"children":[{"tag":"#","children":"2"}]}],"right":""},"bindingOutput":{"tag":"div","attrs":{"className":"page-binding left"},"children":[{"tag":"div","attrs":{"className":"page-binding-top"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-center"},"children":[{"tag":"#","children":""}]},{"tag":"div","attrs":{"className":"page-binding-bottom"},"children":[{"tag":"#","children":""}]}]},"clozeStyle":"greyBox","formatCode":"a4Portrait","tiles":[{"id":"6919d27f-6ba3-497d-af5e-b3411c846c76","z":1,"templateName":"task","license":"cc-zero","licenseVersion":"4.0","title":"Aufgabenstellung - Balkentafel Kürzen II","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":0,"width":170,"height":231,"busData":{"canHaveParentTask":true,"enumeration":2,"hasSolutionTile":null,"stylesOutput":{"--top":0,"--left":0,"--width":170,"--height":231,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"worksheetOutput":[[{"tag":"div","attrs":{"className":"tile-header is-enumerated"},"children":[{"tag":"span","attrs":{"className":"enumeration enumerationType-plain-decimal"},"children":[{"tag":"div","attrs":{"className":"difficultyLevel"},"children":[{"tag":"div","attrs":{"className":"level-3"},"children":[]},{"tag":"div","attrs":{"className":"level-2"},"children":[]},{"tag":"div","attrs":{"className":"level-1"},"children":[]}]},{"tag":"span","attrs":{"className":"number digit1"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":"2"}]}]}]},{"tag":"div","attrs":{"className":"content"},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Löse die Aufgabe Schritt für Schritt:"},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]}]}],{"tag":"div","attrs":{"className":"tile-main"},"children":[{"tag":"ul","attrs":{"className":"lower-alpha"},"children":[{"tag":"li","key":"254af3e1-61d9-4a3e-b71a-3bc9babd6cd1","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Welcher Bruch ist in der Balkentafel eingezeichnet? "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"data-cloze-length":12,"className":"form-print-input form-print-input-12 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"f05833db-0d71-4727-9bc8-159b5df88c9e","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Mit welche Zahl kannst du diesen Bruch vergröbern? "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"#","children":"(siehe Tipp)"},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"data-cloze-length":9,"className":"form-print-input form-print-input-9 hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"47ce23f7-0fab-462d-a37a-94893621931f","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Male den vergröberten Bruch in der Balkentafel an."},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]},{"tag":"li","key":"0ebbfb43-7da1-4c02-a8d1-102f5378a05f","attrs":{},"children":[{"tag":"div","attrs":{"className":"eduMark"},"children":[{"tag":"#","children":"Welchen Bruch erhältst du nach dem Vergröbern? "},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]},{"tag":"span","attrs":{"data-cloze-length":30,"className":"form-print-input form-print-input-30 hasFractions hideSolution"},"children":[{"tag":"span","attrs":{},"children":[{"tag":"#","children":" "}]}]},{"tag":"span","attrs":{"className":"br"},"children":[{"tag":"br","attrs":{},"children":[]}]}]}]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1720700944432,"attrs":{"viewBox":"0 0 642.5196850393702 873.0708661417324","width":642.5196850393702,"height":873.0708661417324,"key":1720700944432,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-6919d27f-6ba3-497d-af5e-b3411c846c76"},"children":[{"tag":"path","attrs":{"d":"M2.6114096641540527 -0.644101619720459 L639.0903995130946 0.9583611488342285 L639.5707004164149 874.6341314653713 L-3.6195626258850098 873.163352046426","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-task isTaskLike font-likeWorksheet fontSize-medium hyphenation-enabled clozeLength-auto visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 has-enumeration enumerationStyle-circle","config":{"fontSize":"medium","lineSpacing":"likeWorksheet"}},{"id":"1a43117d-badd-4d9d-b357-6b6b4c33b642","z":2,"templateName":"image","license":"cc-zero","licenseVersion":"4.0","title":"Eigenes Bild - Balkentafel Kürzen II","licenseUrl":"https://creativecommons.org/publicdomain/zero/1.0/legalcode","x":0,"y":115,"width":170,"height":116,"busData":{"canHaveParentTask":false,"stylesOutput":{"--top":115,"--left":0,"--width":170,"--height":116,"--border-radius":"var(--default-border-radius)","--line-height":"18px","--base-line-height":"18px","--font":"openSans","--fallback-font":"openSans","--font-serif-type":"sans-serif","--font-size":"14px","--fontFeatures":"","--font-offset-top":"1.4px","--fontVariantLigatures":"normal","--cloze-font":"openSans","--cloze-font-size":"14px","--cloze-line-height":"28px","--cloze-height":"28px","--cloze-font-offset-top":"1.4px","--cloze-baseline-bottom-offset":"8.4px","--tab-size":2},"isFixedToBackground":false,"worksheetOutput":[{"tag":"div","attrs":{"style":{"height":"116mm","width":"calc(170mm - var(--border-padding-left, 0px))"},"className":"overflowContainer"},"children":[{"tag":"div","attrs":{"style":"left:0px;top:70px;width:auto;","className":"scaleContainer"},"children":[{"tag":"img","attrs":{"src":"https://editor.mnweg.org/uploads/images/Balkentafel-Viersechstel_ac77cd93-29c8-4cc7-8939-c5ecd47bbfc6.png","style":{"transform":"rotate(0deg)\n scaleX(1)\n scaleY(1)\n "}},"children":[]}]}]}]},"gridId":"main","backgroundOut":[{"tag":"svg","key":1720700944432,"attrs":{"viewBox":"0 0 642.5196850393702 438.4251968503937","width":642.5196850393702,"height":438.4251968503937,"key":1720700944432,"className":"background"},"children":[{"tag":"defs","attrs":{},"children":[{"tag":"clipPath","attrs":{"id":"boundingRectMask-1a43117d-badd-4d9d-b357-6b6b4c33b642"},"children":[{"tag":"path","attrs":{"d":"M-3.383664719760418 3.1203124448657036 L639.1217111517478 0.40247058123350143 L646.1771117617179 442.0705112979755 L2.9736992195248604 437.8602225349292","stroke":"none","stroke-width":"0","fill":"transparent"},"children":[]}]}]},{"tag":"symbol","attrs":{"id":"sprinkle"},"children":[{"tag":"path","attrs":{"d":"m 0.06,0.43 c 0,0.2 0.2,0.4 0.4,0.6 0,0 0.2,0.2 0.5,0.2 l 0.2,0 0.2,0 0,-0.2 0,-0.2 -0.2,0 -0.2,0 -0.2,-0.2 -0.4,-0.4 c 0,-0.07 0,-0.13 0,-0.2 -0.2,0 -0.2,0.2 -0.2,0.4 z"},"children":[]}]}]}],"borderRadius":true,"lineHeightPx":18,"fontSizePx":14,"className":"tile-image isImageLike font-likeWorksheet fontSize-medium hyphenation-enabled visibility-visible borderStyle-none borderWidth-S backgroundColor-grey fillStyle-none fillTone-dark difficultyLevel-0 enumerationStyle-circle","config":{"fontSize":"medium"}}],"className":"fontSize-medium font-openSans clozeStyle-greyBox meta-socialForm-einzelarbeit meta-phase-5 meta-subject-math meta-level-secondaryschoolleavingcertificate meta-materialForm-ab meta-subjectArea-bruchrechnen","style":"--page-width:210mm;--page-height:297mm;--page-paddingTop:10mm;--page-paddingLeft:20mm;--page-paddingRight:20mm;--page-paddingBottom:10mm;--page-gridGutter:0mm;--page-headerHeight:26mm;--page-innerWidth:170mm;--page-headerMarginBottom:4mm;--page-footerHeight:12mm;--page-footerMarginTop:4mm;--page-columnHeight:231mm;--page-logoMarginTop:6mm;--page-logoMarginLeft:6mm;--page-logoMaxWidth:20mm;--page-logoMaxHeight:20mm;--line-height:18px;--default-cloze-height:2em;--default-font-size:14px;--font-size:14px;--font:openSans;--fallback-font:openSans;--page-padding-bottom:10mm;--line-height-small:16px;--font-size-small:12px;--line-height-medium:18px;--font-size-medium:14px;--line-height-large:22px;--font-size-large:16px;--line-height-extra-large:29px;--font-size-extra-large:21px;--custom-goal:Ich kann Brüche kürzen.;--custom-pathTitle:Balkentafel Kürzen;--meta-color:#0433ffff;--meta-image:url(\"/public/images/subjectAreaLogos/bruchrechnen.png\");"}]}}Wenn Sie das lesen können, dann wurde das digitale Arbeitsblatt nicht geladen. Hauptsächlich liegt das daran, dass es nicht in einem eigenständigen Browser-Tab geöffnet wurde, sondern in einer Vorschau, die das Laden der Inhalte des Dokuments blockiert.
Wenn Sie eine Lernplattform nutzen, versuchen Sie das Dokument zunächst herunterzuladen (Rechtsklick, Speichern unter) und dann die Datei zu öffnen. Wenn die Lernplattform ermöglicht, per Rechtsklick oder Auswahlmenü das Dokument in einem neuen Tab zu öffnen, dann probieren Sie das ebenfalls.
Einige Betriebssysteme, wie iOS (für iPad und iPhone), sind so voreingestellt, dass die digitalen ABs nicht direkt im Browser geöffnet werden. Nutzen Sie dann zunächst eine Lernplattform, die das Öffnen der digitalen ABs in einem Browser-Tab ermöglicht.
Für Lehrkräfte: Sie können dieses Dokument auch als Download-Link anbieten. Über diesen wird es Lernenden möglich, das Arbeitsblatt direkt von mnweg.org herunterzuladen. Damit entfällt die Notwendigkeit eine Lernplattform zwischenzuschalten. Aus Datenschutzgründen ist jedoch eine Vorarbeit nötig. Lesen Sie mehr unter: https://editor.mnweg.org/profil/datenschutz.
Wenden Sie sich für Rückfragen gern an: support@tutory.de