Lektion F03: Lineare Funktionen in Normalform
Edumaps
Vorwissen:
F02: Lineare Funktionen - Einführung
Inhalte der Lektion
-
Was ist die Steigung eines linearen Graphen?
-
Was bedeutet Normalform einer linearen Funktion?
-
Wie ermittelt man den Schnittpunkt mit der y-Achse?
-
Was ist ein Steigungsdreieck?
-
Wie stellt man lineare Gleichungen auf?
-
Wie berechnet man Nullstellen?
- Quelle: https://www.matheretter.de/kurse/fkt/linear-nf
Videos
Video: F03-1 Lineare Funktion in Normalform - Funktionsgleichung
-
Funktionsgleichung in Normalform f(x) = m·x + n, Lineare Gleichung, Schnittpunkt mit y-Achse, Steigung und Steigungsdreieck
Video: F03-2 Lineare Funktion in Normalform - Gleichung aus 2 Punkten
-
Funktion aus 2 Punkten ermitteln und Funktionsgleichung aufstellen (Schnittpunkt mit y-Achse und Steigung), Achsenschnittpunkte ermitteln
Video: F03-3 Lineare Funktion in Normalform - Konstante Funktion, Nullstellen
-
Funktionsgleichung und konstante Funktion, Nullstelle und Nullstellenberechnung, senkrechter Funktionsgraph
Video: F03-4 Gerade ins Koordinatensystem einzeichnen (Steigung)
-
Wie zeichnet man eine Gerade in ein Koordinatensystem ein? Man hat eine Funktionsgleichung und soll diese als Graph zeichnen. Wir klären auf, wie man vorgeht und welche Verfahren es gibt.
Video:F03-5 Liegt der Punkt auf dem Graphen (rechnerisch bestimmen)
-
Ob ein Punkt auf einem Graphen liegt, lässt sich schnell überprüfen. In diesem kurzen Video zeigen wir, wie man das rechnerisch bestimmen kann.
Artikel im Wiki
Wiki: Lineare Funktionen in Normalform
Wiki: Punktprobe
Wiki: Nullstelle einer linearen Funktion
Wiki: y-Achsenabschnitt einer linearen Funktion
Rechner
Rechner: Steigung eines linearen Graphen
-
Bewegt die Maus und seht die Abstände für Breite (grün) und Höhe (blau) und die sich ergebende Steigung m (der Wert, der vor dem x steht).
Rechner: Steigung und Schnittpunkt mit y-Achse
-
Zuerst die Steigung wählen (mit Mausklick bestätigen) und danach die Höhe auf der y-Achse einstellen. Die Normalform wird dabei angezeigt.
Rechner: Lineare Funktion in Normalform
-
Hier könnt ihr euch die Normalform einer Funktion: f(x) = m*x + n erstellen, indem ihr zwei Punkte A und B setzt.
Rechner: Nullstellen des linearen Graphen
-
Mit diesem Programm könnt ihr zwei Punkte A und B setzen und erhaltet die Funktionsgleichung sowie die schrittweise Berechnung der Nullstelle angezeigt.
Rechner: Lineare Funktion aus 2 Punkten
-
Dieses Programm berechnet aus zwei Punkten die Funktionsgleichung einer linearen Funktion. Gebt auch eigene Punkte ein. Zusätzlich wird euch der Rechenweg angezeigt.
Arbeitsblätter
AB: Lektion Lineare Funktionen in Normalform (Teil 1)
AB: Lektion Lineare Funktionen in Normalform (Teil 2)
Lernchecks
CHECK: Lineare Funktionen in Normalform I
CHECK: Lineare Funktionen in Normalform II
Häufige Fragen
-
- Funktionsgleichung anhand 2 gegebener Punkte
- Graph der Funktion f(x) = x/2 + 2
- Gerade ins Koordinatensystem einzeichnen (Steigung)?
- Funktionsgleichung aus 2 Punkten ermitteln?
- Welche Steigung hat eine Gerade, wenn 2 Punkten übereinander liegen?
- Liegt der Punkt auf dem Graphen (rechnerisch bestimmen)?
- Steigung einer Strecke aus 2 Punkten ermitteln
- Lineare Funktionen: Nullstellen berechnen?
- Weitere Fragen & Antworten