Videos zu Grundlagen/Algebra (Matheretter)

Edumaps

  • Addition (Summand + Summand = Summe), Subtraktion (Minuend - Subtrahend = Differenz), Multiplikation (Faktor · Faktor = Produkt) und Division (Dividend : Divisor = Quotient). Zerlegen von Zahlen, Multiplikationstabelle für das Einmaleins.

  • Eine der wichtigsten Rechenregeln der Mathematik ist das Distributivgesetz. Es lautet a · (b + c) = a · b + a · c. Wir können es auch um weitere Summanden erweitern, zum Beispiel: a · (b + c + d) = a · b + a · c + a·d

  • Woher stammen die Römischen Zahlzeichen. Wie werden die Zahlen als Additionssystem dargestellt. Was ist bei der Subtraktionsregel und der Reihenfolge der Zahlzeichen zu beachten.

  • Wir schauen uns die grundlenden Zahlenmengen an: Die Natürliche Zahlen (0, 1, 2, 3, ...) und die Ganzen Zahlen (..., -3, -2, -1, 0, 1, 2, 3, ...) sowie das Zeichen für Unendlich.

  • Multiplikation von Zahl mal Bruch sowie Bruch mal Bruch. Umwandlung einer Zahl in einen Bruch, Herleitung der Multiplikationsregeln für Brüche, Veranschaulichung der einzelnen Rechenschritte.

  • Division von Brüchen inklusive Herleitung der Regeln, Kehrwert/Reziproke, Doppelbruch, Zusammenfassung Bruchrechenregeln. Am Videobeginn: Rechentrick Diagonalkürzen bei Multiplikation.

  • Stammbruch, echter und unechter Bruch, Scheinbruch, Dezimalbruch (Dezimalzahl), Rechnen mit Gemischten Zahlen, Umwandlung Bruch ↔ Gemischte Zahl, Zahlenmenge: Rationale Zahlen, Vorzeichen bei Zähler und Nenner.

  • Primzahlen (Natürliche Zahlen, die nur Teiler 1 und sich selbst haben) und die Primfaktorzerlegung (Darstellung einer Zahl als Multiplikation von Primzahlen). Methode zum Finden von Primzahlen.

  • Was sind Term und Gleichung, Gleichungen lösen, Kurzschreibweise 2x. Ausmultiplizieren als Anwendung des Distributivgesetzes. Ausmultiplizieren mit Variablen in Klammern. Lösen der Gleichung: 2·(3x+5) = 22 sowie 5·(2x-3) = (3x-4)·4. Wie muss man zwei Klammern miteinander multiplizieren.

  • Ausklammern und das Distributivgesetz. Ausklammern beim Term 24+10x. Wie finden wir die auszuklammernde Zahl (Primfaktorzerlegung/ggT). Lösen der Gleichung: x²+30x=0. Ausklammern bei Termen: 9a+3, 5xy+10xz und 36c²d+3cd+48cd².

  • Lösen der Gleichung x²-4x+4=0 mit der Binomischen Formel. Vereinfachen und lösen der Bruchterm-Gleichung: (x²-4)/(x+2)=0. Vereinfachen von Termen: (ab+0,5cd)², (x-1)(x+1)(x+3), (5yx³-5y³x)/(x-y), 25a²b²-225a². Unterschied zwischen Term- und Äquivalenzumformung.

  • Wie lassen sich Ungleichungen lösen. Welche Zeichen und Regeln benötigen wir. Umstellen von Ungleichungen und umformen von Termen. Größer und kleiner, größergleich und kleinergleich.

  • Bedeutung der Proportionalität: Steigt ein Wert so steigt auch ein anderer, sinkt ein Wert so sinkt auch ein anderer. Dreisatz: Unbekannten Wert aus 3 gegebenen Werten ermitteln. Beispielaufgaben.

  • Potenzregel bei Division mit unterschiedlicher Basis, Herleitung der Regel: x hoch 0 = 1, Rechenregeln bei x hoch negativem Exponenten, positives bzw. negatives Ergebnis bei geradem oder ungeradem Exponenten, Lösung von Beispielaufgaben.

  • Verzinsung von Kapital und Zinsen über mehrere Jahre, Anwendung der Zinseszinsformel zur direkten Berechnung des Endkapitals aus Startkapital, Zinssatz und Anzahl an Jahren.

  • Wurzel als Umkehrung der Potenz. Begriffe: Wurzelexponent, Radikand und Wurzelwert, Wurzelziehen (Radizieren), Ursprung des Wurzelzeichens √, Quadratwurzel, Umwandlung einer Wurzel zu einer Potenz, Wurzelgesetz für Multiplikation.

  • Division von Wurzeln, Wurzel aus Wurzel (Doppelwurzel), Teilweises Wurzelziehen, Wurzel aus Null, Nullte Wurzel, Rechnen mit negativem Wurzelexponenten, Zusammenfassung der wichtigsten Wurzelrechenregeln.

  • Was sind Irrationale Zahlen (nicht als Bruch a/b darstellbar). Wiederholung der bekannten Zahlenmengen. Nachweis, dass Wurzel aus Zwei nicht als Bruch darstellbar ist. Hinleitung zu den Irrationalen Zahlen und Reelle Zahlen. Reelle Zahlen bestehen aus Rationalen und Irrationalen Zahlen.

  • 3., 4. und 5. Logarithmusregel inklusive Herleitung, Logarithmusarten: Dekadischer (lg) und natürlicher Logarithmus (ln) sowie Logarithmus Dualis (ld), Berechnung von beliebigen Logarithmen mit dem 10er Logarithmus.

  • Was sind Quadratische Gleichungen, Allgemeinform und Normalform, Quadratisches Glied, Lineares Glied, Absolutes Glied, Koeffizienten, Lösen einer quadratischen Gleichung mit Hilfe der p-q-Formel, Lösen der Gleichung mittels Deutung als Funktion.

  • Bedeutung "kubisch". Allgemeinform und Normalform der kubischen Gleichung (Gleichungen 3. Grades), Auflistung von Lösungsverfahren, Anzahl von Lösungen (bzw. Nullstellen bei Deutung als Funktion), was ist ein Polynom und ein Monom, Einleitung zur Division von Polynomen.

  • Wir erklären, warum die Polynomdivision funktioniert bzw. wie Polynome dividiert werden. Darstellung der Division als Bruch, Umformung mittels Erweitern des Zählers sowie Ergänzung des Zählerterms und anschließendes Kürzen.

  • Wiederholung der wichtigsten Regeln zu den Wurzeln. Einführung Wurzelgleichung und Lösung von 3 = √(x+5) mittels Quadrieren. Definitionsmenge festlegen, da Radikand nicht negativ werden darf. Pflichtprobe bei Wurzeln. Lösung der Wurzelgleichungen √(3·x) = √(14+x) und √(15-2·x) + 1 = 3,5 mit Proben.

  • Wurzeln mittels Intervallschachtelung berechnen, Methode 1: Annäherung an die Grenze über weitere Nachkommastellen, Methode 2: Annäherung über den Mittelwert aus den Grenzen. Heron-Verfahren zur Bestimmung des Wurzelwertes inklusive geometrischer Deutung.

  • Wir lösen reduzierte Quartische Gleichungen (4. Grad) mit Wurzelziehen, Ausklammern und Satz vom Nullprodukt. Lösung als Nullstellen von Funktionsgraphen. Zusammenfassung der Lösungsverfahren für die Gleichungstypen. Lösen einer Gleichung 6. Grades per Substitution.

  • Lösung der Exponentialgleichung 16^{x} = 4^{x} · 2, Gleichung als Funktionen deuten, Lösung für 5^2x + 5^x - 30 = 0, Substituieren und mit p-q-Formel auflösen, Lösung für 2^x = 5^x-2 mit lg und Ausmultiplizieren, Hinweis zu 3^x + 4^x = 5^x (numerisches Lösungsverfahren)

  • Addition von Binärzahlen wie bei den Dezimalzahlen, einzelnen Stellen addieren mit Übertrag. Andere Rechenmethode bei Subtraktion: Wir splitten den Minuenden solange auf, bis der Subtrahend ziffernweise von ihm abgezogen werden kann. Nach dem Abzug addieren wir alle Stellen zusammen.

  • Schriftliche Multiplizieren von Binärzahlen wie bei Dezimalzahlen, wir multiplizieren die einzelnen Stellen mit dem ersten Faktor. Anschließend addieren wir alle Ziffern stellenweise zusammen. Die Division wird gleichfalls schrittweise wie bei den Dezimalzahlen ausgeführt.

  • Umwandeln von Dezimalzahlen in Oktalzahlen und in Hexadezimalzahlen. Erklärung der einzelnen Schritte über die Summen von Potenzen. Zusätzlich die Umrechnung von Oktal- und Hexadezimalzahlen in Dezimalzahlen.

  • Was bedeutet das Summenzeichen Σ (Sigma)? Wie funktioniert die Notation mit dem Summenzeichen. Wir lernen kennen: Laufvariable mit Startwert, Endwert und Funktion zur Bildung der Summanden. Wir schauen uns die Summe der Quadratzahlen von 1 bis 5 mit Summenzeichen an.

  • Wir schauen uns Doppelsummen an: Was sind Doppelsummen, wie kann man damit rechnen? Erstes Beispiel Σ Σ n·k² mit Startwerten und Endwerten. Äußere und innere Summe. Zweites Beispiel: Σ Σ (i-1)·3^{j}

  • Mit diesem Rechentrick kommt ihr schnell von Netto zu Brutto. Mit nur einer Multiplikation verwandelt sich der Nettopreis in den Bruttopreis bzw. andersherum per Division. Ebenso lässt sich ein Preisnachlass schnell berechnen.